...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB
【24h】

Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

机译:酶学和结构研究的氧化DNA修复酶AlkB混杂底物识别的机制。

获取原文
获取原文并翻译 | 示例

摘要

Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionaily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N~6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher k_(cat) and K_m for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this k_(cat)/K_m compensation," which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O_2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O_2 binding before nucleotide substrate binding.
机译:混杂的底物识别,即催化化学上多样化的化合物转化的能力,在进化上是有利的,但知之甚少。 DNA修复酶的混杂特别重要,因为它使代谢过程中对不同核苷酸碱基的各种损伤都能通过修复来修复。我们目前的机制的酶学和晶体学研究由大肠杆菌AlkB混杂混杂的底物识别,一种DNA修复酶,可从嘌呤和嘧啶碱基的内环位置去除甲基加合物和一些较大的烷基化损伤。对一系列烷基化碱基的体外Michaelis-Menten分析显示,其修复N1-甲基腺嘌呤(m1A)和N3-甲基胞嘧啶(m3C)的活性较高,修复1,N〜6-乙炔腺嘌呤的活性较低,并且在修复中没有可检测的活性N1-甲基鸟嘌呤或N3-甲基胸腺嘧啶。与m1A相比,M3C的AlkB的k_(cat)和K_m明显更高。因此,通过以名义上较低的亲和力增加底物的周转速率,酶在化学上不同的底物上保持相似的净活性。共晶体结构提供了这种k_(cat)/ K_m补偿的结构基础的见解,”这对AlkB的混杂基片识别做出了重大贡献。在分析在这些研究过程中解决的大型晶体结构整体时,我们观察到2 AlkB的离散全局构象在隧道的可及性上有所不同,该构想被认为可控制O_2底物向活性位点的扩散。一系列蛋白质环之间的立体相互作用控制了这种构象转变,并提出了在核苷酸底物结合之前防止O_2结合的合理机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号