首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Engineering size-scaling of plastic deformation in nanoscale asperities
【24h】

Engineering size-scaling of plastic deformation in nanoscale asperities

机译:纳米粗糙度中塑性变形的工程尺寸尺度

获取原文
获取原文并翻译 | 示例
           

摘要

Size-dependent plastic flow behavior is manifested in nanoindenta-tion, microbending, and pillar-compression experiments and plays a key role in the contact mechanics and friction of rough surfaces. Recent experiments using a hard flat plate to compress single-crystal Au nano-pyramids and others using a Berkovich indenter to indent flat thin films show size scaling into the 100-nm range where existing mechanistic models are not expected to apply. To bridge the gap between single-dislocation nucleation at the 1-nm scale and dislocation-ensemble plasticity at the 1-μm scale, we use large-scale molecular dynamics (MD) simulations to predict the magnitude and scaling of hardness H versus contact size e_c in nano-pyramids. Two major results emerge: a regime of near-power-law size scaling H ≈ l_c~(-η) exists, with η_(MD) ≈ 0.32 compared with η_(expt) ≈ 0.75, and unprecedented quantitative and qualitative agreement between MD and experiments is achieved, with H_(MD) ≈ 4 GPa at l_c ≈ 36 nm and H_(expt) ≈ 2.5 GPa at l_c =100 nm. An analytic model, incorporating the energy costs of forming the geometrically necessary dislocation structures that accommodate the deformation, is developed and captures the unique magnitude and size scaling of the hardness at larger MD sizes and up to experimental scales while rationalizing the transition in scaling between MD and experimental scales. The model suggests that dislocation-dislocation interactions dominate at larger scales, whereas the behavior at the smallest MD scales is controlled by nucleation over energy barriers. These results provide a basic framework for understanding and predicting size-dependent plasticity in nanoscale asperities under contact conditions in realistic engineered surfaces.
机译:尺寸依赖性的塑性流动行为表现在纳米化,微弯曲和柱压缩实验中,并且在接触力学和粗糙表面的摩擦中起着关键作用。最近使用硬平板压缩单晶金纳米金字塔的实验,以及使用Berkovich压头压痕平坦薄膜的其他实验表明,尺寸缩放到100-nm范围内,而现有的机械模型将不适用。为了弥合1nm级别的单位错成核与1μm级别的位错整体可塑性之间的差距,我们使用大规模分子动力学(MD)模拟来预测硬度H的大小和比例与接触尺寸的关系纳米金字塔中的e_c。出现两个主要结果:存在一种近似幂律尺度缩放的机制,H≈l_c〜(-η),η_(MD)≈0.32,而η_(expt)≈0.75,以及MD和M之间的前所未有的定量和定性一致性通过在l_c≈36 nm时H_(MD)≈4 GPa和在l_c = 100 nm时H_(expt)≈2.5 GPa进行了实验。开发了一个分析模型,该模型综合了形成适应变形的几何必要位错结构所需的能源成本,并在较大的MD尺寸和实验尺寸下捕获了硬度的独特大小和尺寸标度,同时合理化了MD之间的标度转换和实验规模。该模型表明,位错-位错相互作用在较大尺度上起主导作用,而在最小MD尺度上的行为则受能垒上的成核作用控制。这些结果提供了一个基本的框架,用于了解和预测在实际工程表面中的接触条件下纳米级粗糙中尺寸相关的可塑性。

著录项

  • 来源
  • 作者单位

    Division of Engineering, Brown University, Providence, Rl 02912 Center for Advanced Vehicular Systems, Box 5405, Mississippi State University, Mississippi State, MS 39762-5404;

    Department of Mechanical Engineering, University of Washington, Seattle, WA 98195;

    Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-023;

    Division of Engineering, Brown University, Providence, Rl 02912;

    Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-023;

    Division of Engineering, Brown University, Providence, Rl 02912;

    General Motors R&D Center, 30500 Mound Road, Warren, Ml 48090-9055;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    atomistics; dislocation interactions; plasticity; size-effects; surfaces;

    机译:原子论位错相互作用;可塑性;尺寸效应;表面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号