首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming
【24h】

Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming

机译:七lamp鳗游泳的神经力学模型中内力,身体刚度和流体环境之间的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.
机译:动物的运动是由许多不同力量的复杂平衡造成的。肌肉产生力量使身体移动;身体具有惯性,弹性和阻尼特性,可以帮助或抵抗肌肉力量;并且环境在身体上产生反作用力。实际运动是这些交互作用的新兴属性。为了检查游泳动物的身体僵硬,肌肉激活和液体环境的作用,开发了七a鳗的计算模型。该模型使用沉浸式边界框架,该框架将流体动力学的Navier-Stokes方程与驱动的弹性体模型完全耦合。这是第一个采用雷诺数的模型,适用于捕获完整的流体-结构相互作用的游泳鱼,其中身体根据内部肌肉力和外部流体力而变形。结果表明,相同的肌肉激活模式可以根据身体的刚度产生不同的运动学,并且最大加速度的最佳刚性值与最大稳定游泳速度的最佳值不同。此外,在许多鱼类中观察到的负性肌肉功在没有感官输入的情况下以较高的拍打频率出现,并且可能有助于提高能量效率。因此,可以通过适当定时的肌肉收缩来调节其身体刚度的游泳鱼可能能够优化其身体的被动动力,从而最大程度地提高峰值加速度或游泳速度。

著录项

  • 来源
  • 作者单位

    Institute for Systems Research and Department of Biology, University of Maryland, College Park, MD,Department of Mechanical Engineering, The Johns Hopkins University, 112 Hackerman Hall, 3400 North Charles Street, Baltimore, MD 21218;

    Department of Mathematics and Center for Computational Science, Tulane University, New Orleans, LA,Department of Mechanical Engineering, The Johns Hopkins University, 112 Hackerman Hall, 3400 North Charles Street, Baltimore, MD 21218;

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ;

    Institute for Systems Research and Department of Biology, University of Maryland, College Park, MD;

    Department of Mathematics and Center for Computational Science, Tulane University, New Orleans, LA;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    computational fluid dynamics; elasticity; locomotion;

    机译:计算流体动力学;弹性;运动;
  • 入库时间 2022-08-18 00:41:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号