首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Cells navigate with a local-excitation, global-inhibition-biased excitable network
【24h】

Cells navigate with a local-excitation, global-inhibition-biased excitable network

机译:细胞通过局部激发,偏向全局抑制的可激发网络进行导航

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cells have an internal compass that enables them to move along shallow chemical gradients. As amoeboid cells migrate, signaling events such as Ras and PI3K activation occur spontaneously on pseu-dopodia. Uniform stimuli trigger a symmetric response, whereupon cells stop and round up; then localized patches of activity appear as cells spread. Finally cells adapt and resume random migration. In contrast, chemotactic gradients continuously direct signaling events to the front of the cell. Local-excitation, global-inhibition (LEGI) and reaction-diffusion models have captured some of these features of chemotaxing cells, but no system has explained the complex response kinetics, sensitivity to shallow gradients, or the role of recently observed propagating waves within the actin cytoskele-ton. We report here that Ras and PI3K activation move in phase with the cytoskeleton events and, drawing on all of these observations, propose the LEGI-biased excitable network hypothesis. We formulate a model that simulates most of the behaviors of chemotactic cells: In the absence of stimulation, there are spontaneous spots of activity. Stimulus increments trigger an initial burst of patches followed by localized secondary events. After a few minutes, the , system adapts, again displaying random activity. In gradients, the activity patches are directed continuously and selectively toward the chemoattractant, providing an extraordinary degree of amplification. Importantly, by perturbing model parameters, we generate distinct behaviors consistent with known classes of mutants. Our study brings together heretofore diverse observations on spontaneous cytoskeletal activity, signaling responses to temporal stimuli, and spatial gradient sensing into a unified scheme.
机译:细胞具有内部罗盘,可使其沿较浅的化学梯度移动。随着变形虫细胞的迁移,假多足动物自发发生诸如Ras和PI3K激活等信号事件。均匀的刺激触发对称反应,随后细胞停止并聚集。然后随着细胞扩散,出现局部活动斑块。最后,细胞适应并恢复随机迁移。相反,趋化梯度将信号传导事件连续地引导至细胞的前端。局部激发,整体抑制(LEGI)和反应扩散模型已捕获了趋化细胞的某些特征,但尚无系统能解释复杂的反应动力学,对浅梯度的敏感性或最近观测到的传播波的作用。肌动蛋白细胞骨架。我们在这里报告Ras和PI3K激活与细胞骨架事件同相移动,并基于所有这些观察结果,提出了LEGI偏向的兴奋性网络假设。我们制定了一个模型来模拟趋化细胞的大多数行为:在没有刺激的情况下,会有自发的活动点。刺激增量触发补丁的初始爆发,随后是局部次要事件。几分钟后,系统会适应,再次显示随机活动。在梯度中,活性斑块连续且选择性地指向趋化剂,提供了非凡的扩增程度。重要的是,通过扰动模型参数,我们生成与已知类别的突变体一致的不同行为。迄今为止,我们的研究将有关自发细胞骨架活性,对时间刺激的信号反应以及空间梯度感测的各种观察结果整合到一个统一的方案中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号