首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments
【24h】

Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments

机译:使用体内,体外和原子力显微镜实验验证了纳米载体与内皮结合的计算模型

获取原文
获取原文并翻译 | 示例
       

摘要

A computational methodology based on Metropolis Monte Carlo (MC) and the weighted histogram analysis method (WHAM) has been developed to calculate the absolute binding free energy between functionalized nanocarriers (NC) and endothelial cell (EC) surfaces. The calculated NC binding free energy landscapes yield binding affinities that agree quantitatively when directly compared against analogous measurements of specific antibody-coated NCs (100 nm in diameter) to intracellular adhesion molecule-1 (ICAM-1) expressing EC surface in in vitro cell-culture experiments. The effect of antibody surface coverage (σ_s) of NC on binding simulations reveals a threshold σ_s value below which the NC binding affinities reduce drastically and drop lower than that of single anti-ICAM-1 molecule to ICAM-1. The model suggests that the dominant effect of changing σ_s around the threshold is through a change in multivalent interactions; however, the loss in translational and rotational entropies are also important. Consideration of shear flow and glycocalyx does not alter the computed threshold of antibody surface coverage. The computed trend describing the effect of σ_s on NC binding agrees remarkably well with experimental results of in vivo targeting of the anti-ICAM-1 coated NCs to pulmonary endothelium in mice. Model results are further validated through close agreement between computed NC rupture-force distribution and measured values in atomic force microscopy (AFM) experiments. The three-way quantitative agreement with AFM, in vitro (cell-culture), and in vivo experiments establishes the mechanical, thermodynamic, and physiological consistency of our model. Hence, our computational protocol represents a quantitative and predictive approach for model-driven design and optimization of functionalized nanocarriers in targeted vascular drug delivery.
机译:已经开发了一种基于Metropolis Monte Carlo(MC)和加权直方图分析方法(WHAM)的计算方法,以计算功能化纳米载体(NC)和内皮细胞(EC)表面之间的绝对结合自由能。当与体外培养的细胞表面表达EC表面的细胞内黏附分子1(ICAM-1)的特异性抗体包被NC(直径100 nm)的类似测量结果直接进行比较时,计算得出的NC结合自由能态图产生的结合亲和力在数量上一致。文化实验。 NC的抗体表面覆盖率(σ_s)对结合模拟的影响揭示了一个阈值σ_s值,低于该阈值时NC结合亲和力急剧降低,并且比对ICAM-1的单个抗ICAM-1分子降低。该模型表明,在阈值附近改变σ_s的主要作用是通过多价相互作用的改变。但是,平移和旋转熵的损失也很重要。考虑剪切流和糖萼不会改变抗体表面覆盖率的计算阈值。计算出的描述σ_s对NC结合作用的趋势与小鼠体内抗ICAM-1包被的NCs体内靶向肺内皮的实验结果非常吻合。通过计算得出的NC断裂力分布与原子力显微镜(AFM)实验中的测量值之间的密切一致性,进一步验证了模型结果。与AFM,体外(细胞培养)和体内实验的三向定量协议建立了我们模型的机械,热力学和生理一致性。因此,我们的计算协议代表了一种定量和预测性方法,用于模型驱动的设计和靶向血管药物输送中功能化纳米载体的优化。

著录项

  • 来源
  • 作者单位

    Department of Bioengineering,University of Pennsylvania, Philadelphia, PA, 19104;

    rnDepartment of Anesthesiology and Critical Care,University of Pennsylvania, Philadelphia, PA, 19104;

    rnInstitute for Environmental Medicine,University of Pennsylvania, Philadelphia, PA, 19104 Department of Pharmacology,University of Pennsylvania, Philadelphia, PA, 19104;

    rnDepartment of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104;

    rnDepartment of Bioengineering,University of Pennsylvania, Philadelphia, PA, 19104 Department of Anesthesiology and Critical Care,University of Pennsylvania, Philadelphia, PA, 19104;

    rnInstitute for Environmental Medicine,University of Pennsylvania, Philadelphia, PA, 19104 Department of Pharmacology,University of Pennsylvania, Philadelphia, PA, 19104;

    rnDepartment of Bioengineering,University of Pennsylvania, Philadelphia, PA, 19104;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    absolute binding free energy; monte carlo; targeted drug delivery; multivalent interactions; antibody surface coverage;

    机译:绝对束缚自由能;蒙特卡洛;有针对性的药物输送;多价相互作用抗体表面覆盖;
  • 入库时间 2022-08-18 00:41:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号