首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >General trend for pressurized superconducting hydrogen-dense materials
【24h】

General trend for pressurized superconducting hydrogen-dense materials

机译:加压超导氢致密材料的总体趋势

获取原文
获取原文并翻译 | 示例
       

摘要

The long-standing prediction that hydrogen can assume a metallic state under high pressure, combined with arguments put forward more recently that this state might even be superconducting up to high temperatures, continues to spur tremendous research activities toward the experimental realization of metallic hydrogen. These efforts have however so far been impeded by the enormous challenges associated with the exceedingly large required pressure. Hydrogen-dense materials, of the MH_4 form (where M can be, e.g., Si, Ge, or Sn) or of the MH_3 form (with M being, e.g., Al, Sc, Y, or La), allow for the rather exciting opportunity to carry out a proxy study of metallic hydrogen and associated high-temperature superconductivity at pressures within the reach of current techniques. At least one experimental report indicates that a superconducting state might have been observed already in SiH_4, and several theoretical studies have predicted superconductivity in pressurized hydrogen-rich materials; however, no systematic dependence on the applied pressure has yet been identified so far. In the present work, we have used first-principles methods in an attempt to predict the superconducting critical temperature (T_c) as a function of pressure (P) for three metal-hydride systems of the MH_3 form, namely ScH_3, YH,, and LaH_3. By comparing the obtained results, we are able to point out a general trend in the T_c-dependence on P. These gained insights presented here are likely to stimulate further theoretical studies of metallic phases of hydrogen-dense materials and should lead to new experimental investigations of their superconducting properties.
机译:关于氢在高压下可以呈现金属状态的长期预测,再加上最近提出的这种状态甚至可能在高温下超导的论据,继续刺激了对金属氢实验实现的巨大研究活动。然而,迄今为止,这些努力受到与极大所需压力相关的巨大挑战的阻碍。 MH_4形式的氢致密材料(其中M可以是例如Si,Ge或Sn)或MH_3形式的氢致密材料(M可以是Al,Sc,Y或La)一个激动人心的机会,可以在当前技术范围内的压力下进行金属氢及其相关的高温超导性的替代研究。至少有一项实验报告表明,在SiH_4中可能已经观察到超导状态,并且一些理论研究已经预测了加压富氢材料中的超导性。但是,到目前为止,尚未发现对所施加压力的系统依赖性。在当前的工作中,我们已经使用第一性原理方法来尝试预测MH_3形式的三个金属氢化物系统ScH_3,YH和C的超导临界温度(T_c)与压力(P)的关系。 LaH_3。通过比较获得的结果,我们可以指出T_c对P的依赖性的总体趋势。这里介绍的这些已获得的见识可能会激发氢致密材料金属相的进一步理论研究,并应导致新的实验研究超导特性

著录项

  • 来源
  • 作者单位

    Condensed Matter Theory Group, Department of Physics and Materials Science, Uppsala University, Box 530 SE-751 21, Uppsala, Sweden Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, United Kingdom;

    rnCondensed Matter Theory Group, Department of Physics and Materials Science, Uppsala University, Box 530 SE-751 21, Uppsala, Sweden;

    rnGeophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015;

    rnQuantum Functional Semiconductor Research Center and Department of Physics, Dongguk University, Seoul 100-715, Korea;

    rnCondensed Matter Theory Group, Department of Physics and Materials Science, Uppsala University, Box 530 SE-751 21, Uppsala, Sweden Applied Material Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH) SE-100 44, Stockholm, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ab initio calculations; high pressure; lattice dynamics; metal-hydride; superconductivity;

    机译:从头算起;高压力;晶格动力学金属氢化物超导;
  • 入库时间 2022-08-18 00:41:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号