【24h】

Microbial oceanography of anoxic oxygen minimum zones

机译:缺氧最小区域的微生物海洋学

获取原文
获取原文并翻译 | 示例
           

摘要

Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N_2) and nitrous oxide (N_2O) gases. Anaerobic microbial processes, including the two pathways of N_2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.
机译:大量缺氧和富含亚硝酸盐的水定义了全球海洋的主要最小氧气区(OMZ)。它们支持影响海洋氮经济的各种微生物群落,导致固定氮的主要损失为二氮(N_2)和一氧化二氮(N_2O)气体。厌氧微生物过程,包括N_2产生,反硝化和厌氧铵氧化的两种途径,对氧敏感,有些仅在严格缺氧的条件下发生。然而,用于测量海水中溶解氧的常规方法(Winkler滴定法)的检测限太大,无法将低氧条件与真正的缺氧区分开。但是,新的分析技术揭示了富含亚硝酸盐的OMZ中氧浓度的降低正在逐渐消失,这表明这些OMZ本质上是缺氧海域(AMZ)。自主监测平台还揭示了以前无法识别的氧气向AMZ核的偶发入侵,这可以在典型的缺氧环境中定期支持需氧代谢。尽管氮循环被认为是AMZs的微生物生态学和生物地球化学的主要因素,但最近的环境基因组学和地球化学研究表明存在其他相关过程,特别是与硫和碳循环有关的过程。 AMZ对应于由全氧体系和全硫体系代表的两个“端点”之间的中间状态。现代和古代的AMZ和硫化盆地在化学和功能上都相关。全球变化正在影响生物地球化学通量和海洋化学资源清单的规模,导致AMZ化学和生物学的变化可能会持续到未来。

著录项

  • 来源
  • 作者单位

    Departamento de Oceanografia, Universidad de Concepcion, Concepcion 4070386, Chile;

    Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, 5230 Odense M, Denmark;

    Departments of Biological Engineering and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02138;

    College of Earth, Ocean, Atmospheric Sciences, Oregon State University, Corvallis, OR 97331;

    School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号