首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA
【24h】

Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA

机译:修复酶对病变的处理严重地受到了残基的限制,这些残基可以防止未受损的DNA出现异常活性

获取原文
获取原文并翻译 | 示例
       

摘要

Dna base excision repair is essential for maintaining genomic integrity and for active DNA demethylation, a central element of epigenetic regulation. A key player is thymine DNA glycosylase (TDG), which excises thymine from mutagenic G-T mispairs that arise by deamination of 5-methylcytosine (mC). TDG also removes 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC produced by Tet enzymes. Recent studies show that the glycosylase activity of TDG is essential for active DNA demethylation and for embryonic development. Our understanding of how repair enzymes excise modified bases without acting on undamaged DNA remains incomplete, particularly for mismatch glycosylases such as TDG. We solved a crystal structure of TDG (catalytic domain) bound to a substrate analog and characterized active-site residues by mutagenesis, kinetics, and molecular dynamics simulations. The studies reveal how TDG binds and positions the nu-cleophile (water) and uncover a previously unrecognized catalytic residue (Thr197). Remarkably, mutation of two active-site residues (Ala 145 and His151) causes a dramatic enhancement in G-T glycosylase activity but confers even greater increases in the aberrant removal of thymine from normal A-T base pairs. The strict conservation of these residues may reflect a mechanism used to strike a tolerable balance between the requirement for efficient repair of G-T lesions and the need to minimize aberrant action on undamaged DNA, which can be mutagenic and cytotoxic. Such a compromise in G-T activity can account in part for the relatively weak G-T activity of TDG, a trait that could potentially contribute to the hypermutability of CpG sites in cancer and genetic disease.
机译:DNA碱基切除修复对于维持基因组完整性和活跃的DNA去甲基化(表观遗传调控的核心要素)至关重要。关键的是胸腺嘧啶DNA糖基化酶(TDG),该酶可将胸腺嘧啶从5-甲基胞嘧啶(mC)脱氨基引起的诱变G-T错配中切除。 TDG还去除了Tet酶产生的mC的氧化形式5-甲酰基胞嘧啶和5-羧基胞嘧啶。最近的研究表明,TDG的糖基化酶活性对于活性DNA脱甲基化和胚胎发育至关重要。我们对修复酶如何切除修饰的碱基而不作用于未损坏的DNA的理解仍然不完整,特别是对于糖基化酶错配(例如TDG)而言。我们解决了与底物类似物结合的TDG(催化域)的晶体结构,并通过诱变,动力学和分子动力学模拟对活性位点残基进行了表征。研究揭示了TDG如何结合并定位亲核试剂(水)并发现先前无法识别的催化残基(Thr197)。值得注意的是,两个活性位点残基(Ala 145和His151)的突变会引起G-T糖基化酶活性的显着提高,但从正常A-T碱基对中异常去除胸腺嘧啶的增加更大。这些残基的严格保存可能反映了一种机制,该机制可在有效修复G-T病变的要求与最小化对未突变DNA的异常作用(可能是诱变和细胞毒性)之间达到可承受的平衡。 G-T活性的这种折衷可以部分解释TDG相对较弱的G-T活性,该特性可能潜在地导致癌症和遗传性疾病中CpG位点的超变异性。

著录项

  • 来源
  • 作者单位

    Department of Biochemistry and Molecular Biology, School of Medicine, and School of Pharmacy, University of Maryland, Baltimore, MD 21201;

    Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201;

    Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201;

    Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201;

    Department of Biochemistry and Molecular Biology, School of Medicine, and School of Pharmacy, University of Maryland, Baltimore, MD 21201;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号