首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Membrane-integral pyrophosphatase subfamily capable of translocating both Na~+ and H~+
【24h】

Membrane-integral pyrophosphatase subfamily capable of translocating both Na~+ and H~+

机译:能够整合Na〜+和H〜+的膜整合焦磷酸酶亚家族

获取原文
获取原文并翻译 | 示例
       

摘要

One of the strategies used by organisms to adapt to life under conditions of short energy supply is to use the by-product pyrophos-phate to support cation gradients in membranes. Transport reactions are catalyzed by membrane-integral pyrophosphatases (PPases), which are classified into two homologous subfamilies: H~+-transporting (found in prokaryotes, protists, and plants) and Na~+-transporting (found in prokaryotes). Transport activities have been believed to require specific machinery for each ion, in accordance with the prevailing paradigm in membrane transport. However, experiments using a fluorescent pH probe and ~(22)Na~+ measurements in the current study revealed that five bacterial PPases expressed in Escherichia coli have the ability to simultaneously translocate H~+ and Na~+ into inverted membrane vesicles under physiological conditions. Consistent with data from phylo-genetic analyses, our results support the existence of a third, dual-specificity bacterial Na~+,H~+-PPase subfamily, which apparently evolved from Na~+-PPases. Interestingly, genes for Na~+,H~+-PPase have been found in the major microbes colonizing the human gastrointestinal tract. The Na~+,H~+-PPases require Na~+ for hydro-lytic and transport activities and are further activated by K~+. Based on ionophore effects, we conclude that the Na~+ and H~+ transport reactions are electrogenic and do not result from secondary antiport effects. Sequence comparisons further disclosed four Na~+,H~+-PPase signature residues located outside the ion conductance channel identified earlier in PPases using X-ray crystallography. Our results collectively support the emerging paradigm that both Na~+ and H~+ can be transported via the same mechanism, with switching between Na~+ and H~+ specificities requiring only subtle changes in the transporter structure.
机译:生物体在能量供应短缺的情况下适应生命的策略之一是使用副产物焦卟啉来支持膜中的阳离子梯度。膜整合焦磷酸酶(PPases)催化转运反应,膜焦磷酸酶被分为两个同源的亚家族:H〜+转运(在原核生物,原生生物和植物中发现)和Na〜+转运(在原核生物中发现)。据信,根据膜运输中的流行范例,运输活动对每种离子都需要特定的机械。然而,当前研究中使用荧光pH探针和〜(22)Na〜+测量的实验表明,在大肠杆菌中表达的5种细菌PPase具有在生理条件下同时将H〜+和Na〜+转移到倒膜小泡中的能力。 。与系统进化分析的数据一致,我们的结果支持了第三种双特异性细菌Na〜+,H〜+ -PPase亚家族的存在,该亚家族显然是从Na〜+ -PPases进化而来的。有趣的是,已在人类胃肠道定殖的主要微生物中发现了Na〜+,H〜+ -PPase基因。 Na〜+,H〜+ -PPases需要Na〜+才能进行水解和转运,并被K〜+进一步激活。基于离子载体效应,我们得出结论,Na〜+和H〜+转运反应是电发生的,不是由二次反端口效应引起的。序列比较进一步公开了使用X射线晶体学在PPases中较早鉴定出的位于离子电导通道外的四个Na + +,H + PPPase签名残基。我们的研究结果共同支持了新兴的范例,即Na〜+和H〜+都可以通过相同的机制进行转运,而Na〜+和H〜+特异性之间的切换仅需要转运蛋白结构的细微变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号