首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Deletion of Mthfd1/ causes embryonic lethality and neural tube and craniofacial defects in mice
【24h】

Deletion of Mthfd1/ causes embryonic lethality and neural tube and craniofacial defects in mice

机译:删除Mthfd1 /会导致小鼠胚胎致死力和神经管以及颅面缺陷

获取原文
获取原文并翻译 | 示例
           

摘要

Maternal supplementation with folic acid is known to reduce the incidence of neural tube defects (NTDs) by as much as 70%. Despite the strong clinical link between folate and NTDs, the biochemical mechanisms through which folic acid acts during neural tube development remain undefined. The Mthfd1/ gene encodes a mito-chondrial monofunctional 10-formyl-tetrahydrofolate synthetase, termed MTHFD1L. This gene is expressed in adults and at all stages of mammalian embryogenesis with localized regions of higher expression along the neural tube, developing brain, craniofacial structures, limb buds, and tail bud. In both embryos and adults, MTHFD1L catalyzes the last step in the flow of one-carbon units from mitochondria to cytoplasm, producing formate from 10-formyl-THF. To investigate the role of mitochondrial formate production during embryonic development, we have analyzed MthfdH knockout mice. All embryos lacking Mthfdil exhibit aberrant neural tube closure including craniorachischisis and exencephaly and/or a wavy neural tube. This fully penetrant folate-pathway mouse model does not require feeding a folate-def icient diet to cause this phenotype. Maternal supplementation with sodium formate decreases the incidence of NTDs and partially rescues the growth defect in embryos lacking Mthfdil. These results reveal the critical role of mitochond-rially derived formate in mammalian development providing a mechanistic link between folic acid and NTDs. In light of previous studies linking a common splice variant in the human MTHFD1L gene with increased risk for NTDs, this mouse model provides a powerful system to help elucidate the specific metabolic mechanisms that underlie folate-associated birth defects, including NTDs.%Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712;rnInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712,Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712;rnDepartment of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712;rnDell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78712;rnInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712;rnInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712,Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712;Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712;
机译:已知孕妇补充叶酸可将神经管缺陷(NTD)的发生率降低多达70%。尽管叶酸和NTD之间存在着很强的临床联系,但叶酸在神经管发育过程中所起的生化机制仍不清楚。 Mthfd1 /基因编码线粒体单功能10-甲酰基-四氢叶酸合成酶,称为MTHFD1L。该基因在成年期和哺乳动物胚胎发生的各个阶段表达,沿神经管,大脑,颅面结构,肢芽和尾芽的表达较高。在胚胎和成年小鼠中,MTHFD1L都催化一碳单元从线粒体到细胞质的最后一步流动,从10-甲酰基-THF生成甲酸。为了研究线粒体甲酸盐在胚胎发育过程中的作用,我们分析了MthfdH基因敲除小鼠。所有缺少Mthfdil的胚胎都表现出异常的神经管闭合,包括颅骨裂和运动障碍和/或波浪形神经管。这种完全渗透性的叶酸途径小鼠模型不需要饲喂缺乏叶酸的饮食来引起这种表型。母体补充甲酸钠可降低NTD的发生率,并部分挽救缺乏Mthfdil的胚胎的生长缺陷。这些结果揭示了线粒体衍生的甲酸盐在哺乳动物发育中的关键作用,从而提供了叶酸和NTD之间的机制联系。鉴于先前的研究将人类MTHFD1L基因中的常见剪接变体与NTD风险增加联系起来,因此该小鼠模型提供了一个强大的系统,可帮助阐明叶酸相关出生缺陷(包括NTD)的具体代谢机制。德克萨斯大学奥斯汀分校,生物化学与生物化学,德克萨斯州78712; rn德克萨斯大学奥斯汀分校,细胞与分子生物学研究所,德克萨斯州78712,德克萨斯大学奥斯汀分校,分子细胞与发育生物学分会,德克萨斯州78712;德克萨斯大学奥斯汀分校化学与生物化学系,德克萨斯州78712;德克萨斯大学奥斯汀分校戴尔儿科研究所,德克萨斯州78712; rn德克萨斯大学细胞与分子生物学研究所得克萨斯州奥斯汀市奥斯汀市,德克萨斯州78712;得克萨斯大学奥斯汀分校细胞和分子生物学研究所,得克萨斯州78712,分子细胞与发展科tal生物学,德克萨斯大学奥斯汀分校,德克萨斯州奥斯汀78712;化学与生物化学系,德克萨斯大学奥斯汀分校,奥斯汀,德克萨斯州78712,德克萨斯大学奥斯汀分校细胞与分子生物学研究所,德克萨斯78712;

著录项

  • 来源
  • 作者单位

    Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712;

    Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712,Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712;

    Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712;

    Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78712;

    Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712;

    Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712,Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712;

    Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号