...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Numerical investigation of the application of high temperature air combustion in an industrial furnace
【24h】

Numerical investigation of the application of high temperature air combustion in an industrial furnace

机译:高温空气燃烧在工业炉中应用的数值研究

获取原文
获取原文并翻译 | 示例

摘要

Numerical simulation of turbulent combustion in the radiation section of an industrial steam cracking furnace is carried out in classical premixed and newly developed high temperature air combustion (HiTAC) regimes. The eddy dissipation concept coupled with the detailed KEE-58 mechanism is employed to resolve turbulence-chemistry interaction and combustion chemistry. Three simulations with highly preheated atmospheric air (19%wt oxygen) and diluted fuel are performed to study the attractive features of the so-called HiTAC regime. It is shown that when the inlet air temperature increases to 1100 K, fuel dilution can provide favorable characteristics of the high temperature air combustion. In this temperature, combustion continues even under extremely fuel-lean conditions such as 1.5%wt of methane in the reactants. Calculation of the Damkohler number determined that a finite-rate reaction zone is volumetrically extended throughout the furnace. Computation of NO_x emission from different chemical routes revealed that 80% reduction of NO_x formation in fuel-diluted high temperature air combustion regimes could be achieved compared to the normal firing condition. Moreover, the results implied that the emission of NO_x in normal firing and high temperature air combustion conditions was mainly attributed to thermal/prompt and prompt/NNH mechanisms, respectively.
机译:在经典的预混和新开发的高温空气燃烧(HiTAC)方案中,对工业蒸汽裂化炉辐射段中湍流燃烧的数值模拟进行了研究。涡流消散概念与详细的KEE-58机理相结合,用于解决湍流化学相互作用和燃烧化学的问题。使用高度预热的大气(氧气含量为19%wt)和稀释的燃料进行了三个模拟,以研究所谓的HiTAC方案的吸引人的特征。结果表明,当进气温度升至1100 K时,燃料稀释可以提供有利的高温空气燃烧特性。在此温度下,即使在极贫燃料的条件下(例如反应物中甲烷的重量百分比为1.5%),燃烧也会继续。 Damkohler数的计算确定了有限速率的反应区域在整个熔炉中在体积上扩展。计算不同化学路线的NO_x排放量表明,与正常燃烧条件相比,在燃料稀释的高温空气燃烧方案中,NO_x形成量减少了80%。此外,该结果暗示在正常燃烧和高温空气燃烧条件下NO_x的排放分别主要归因于热/迅速和迅速/ NNH机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号