...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Computational fluid dynamics analysis of multi-element, high-lift aerofoil sections at transonic manoeuvre conditions
【24h】

Computational fluid dynamics analysis of multi-element, high-lift aerofoil sections at transonic manoeuvre conditions

机译:跨音速操纵条件下多元素高升翼型截面的计算流体动力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

The application of a previously developed computational method to the prediction of high-lift performance for multi-element aerofoil sections operating at transonic flow conditions is described. The flows are computed by solving the Reynolds-averaged Navier-Stokes equations, using a full differential Reynolds-stress turbulence model to evaluate the various Reynolds-stress components appearing in the governing mean-flow equations. Algebraic wall functions are used to bridge the molecular viscosity-dominated region immediately adjacent to the aerofoil surfaces. An unstructured grid-based computational fluid dynamics (CFD) methodology is used to deal with the geometric complexity of the multi-element aerofoil configurations. Initial results are presented for the viscous, transonic flow development around the SKF 1.1 supercritical aerofoil section, equipped with either a trailing-edge flap or a leading-edge slat. Predicted surface pressure distributions generally compare well with experimental data for the two high-lift aerofoil geometries considered, at a free-stream Mach number of 0.6 and over a range of incidence angles. There are some discrepancies in the regions immediately downstream of shock wave/ boundary layer interactions, possibly resulting from the use of wall-function boundary conditions in the computations. Predicted Mach number contours indicate the complexity of the transonic flow fields for high-lift configurations, with the slat wake passing through an extensive supersonic-flow region, terminated by a normal shock wave, on the main aerofoil upper surface, for example.
机译:描述了先前开发的计算方法在预测跨音速流动条件下的多元素翼型截面高升力性能中的应用。通过求解雷诺平均的Navier-Stokes方程,并使用全微分雷诺应力湍流模型来评估控制平均流方程中出现的各种雷诺应力分量,来计算流量。代数壁函数用于桥接紧邻机翼表面的分子粘度主导区域。基于非结构化网格的计算流体动力学(CFD)方法用于处理多元素翼型构型的几何复杂性。初步结果显示了围绕SKF 1.1超临界翼型截面的粘性,跨音速流动的发展,该截面配有后缘襟翼或前缘板条。对于自由流马赫数为0.6且在一定入射角范围内,所考虑的两个高升翼型几何形状,预测的表面压力分布通常可以与实验数据很好地比较。在冲击波/边界层相互作用的紧邻下游的区域中存在一些差异,可能是由于在计算中使用了墙函数边界条件。预测的马赫数等高线表示高升程配置的跨音速流场的复杂性,例如,板条尾流穿过翼型主表面上的宽广的超音速流区域,并由法向冲击波终止。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号