首页> 外文期刊>Proceedings of the institution of mechanical engineers >A direct yaw moment controller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control
【24h】

A direct yaw moment controller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control

机译:用于四轮电机驱动电动车辆的直接偏航时刻控制器,使用自适应滑模控制

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a direct yaw moment control algorithm is designed such that the corrective yaw moment is generated through direct control of driving and braking torques of four in-wheel brushless direct current motors located at the empty space of vehicle wheels. The proposed control system consists of a higher-level controller and a lower-level controller. In the upper level of proposed controller, a PID controller is designed to keep longitudinal velocity constant in manoeuvres. In addition, due to probable modelling error and parametric uncertainties as well as adaptation of unknown parameters in control law, an adaptive sliding mode control through adaptation of unknown parameters is presented to yield the corrective yaw moment such that the yaw rate tracks the desired value and the vehicle sideslip angle maintains limited so as to improve vehicle handling stability. The lower-level controller allocates the achieved control efforts (i.e. total longitudinal force and corrective yaw moment) to driving or regenerative braking torques of four in-wheel motors so as to generate the desired tyre longitudinal forces. The additional yaw moment applied by upper-lever controller may saturate the tyre forces. To this end, a novel longitudinal slip ratio controller which is designed based on fuzzy logic is included in the lower-level controller. A tyre dynamic weight transfer-based torque distribution algorithm is employed to distribute the motor driving torque or regenerative braking torque of each in-wheel motor for vehicle stability enhancement. A seven degree-of-freedom non-linear vehicle model with Magic Formula tyre model as well as the proposed control algorithm are simulated in Matlab/Simulink software. Three steering inputs including lane change, double lane change and step-steer manoeuvres in different roads are investigated in simulation environment. The simulation results show that the proposed control algorithm is capable of improving vehicle handling stability and maintaining vehicle yaw stability.
机译:在本文中,设计了一种直接横摆力量控制算法,使得通过直接控制位于车轮空间的空间的四轮无刷直流电动机的驱动和制动扭矩直接控制校正横摆力。所提出的控制系统包括更高级别的控制器和较低级控制器。在所提出的控制器的上层中,PID控制器旨在将纵向速度恒定保持在操纵中。另外,由于可能的建模误差和参数不确定性以及控制法中未知参数的调整,提出了一种通过改编未知参数的自适应滑动模式控制,以产生校正的横摆力矩,使得横摆率跟踪所需的值和车辆侧线角度保持有限,以改善车辆处理稳定性。下层控制器分配了实现的控制力(即总纵向力和纠正锯齿矩),以驱动或再生四轮电机的制动扭矩,以便产生所需的轮胎纵向力。由上杠杆控制器施加的额外的横摆力矩可以使轮胎力饱和。为此,基于模糊逻辑设计的新型纵向滑动比控制器包括在下级控制器中。用于基于轮胎动态重量传输的扭矩分布算法来分配每个轮廓电动机的电动机驱动扭矩或再生制动扭矩,以进行车辆稳定性增强。 Matlab / Simulink软件模拟了具有魔法公式轮胎模型的七个自由度非线性车辆模型以及所提出的控制算法。在仿真环境中研究了三种转向投入,包括车道变化,双车道变化和不同道路上的步进操纵。仿真结果表明,所提出的控制算法能够改善车辆处理稳定性和维持车辆偏航稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号