首页> 外文期刊>Printed Circuit Design >Decoupling Strategies FOR PCBs
【24h】

Decoupling Strategies FOR PCBs

机译:PCB的去耦策略

获取原文
获取原文并翻译 | 示例
       

摘要

It's no secret that most digital devices demand a high peak current as circuits switch immediately following a clock edge (FIGURE 1). For example, a 100 MHz device with an average current draw of 4 A may actually require 20 A of current during the first few nanoseconds of the clock cycle. Obviously, including a 20 A power supply for this circuit will increase the size and cost of the final product. Less obviously, the series inductance of PCB traces and component pins may make it impossible for a monolithic power supply to respond quickly enough to satisfy instantaneous current demands. If insufficient current capacity is available to the device, it will experience some combination of voltage droop and ground bounce. These phenomena usually manifest as high-frequency noise. Decoupling capacitors address these problems by providing a distributed source of operating current accessible via a low-impedance (i.e., low-inductance) path. As a practical matter, the decoupling capacitors serve to directly power dig- ital devices, while the main power supply serves to recharge the capacitors. The key to the successful design of a capacitor decoupling network is choosing the right capacitors and using the right layout.
机译:众所周知,大多数数字设备都需要高峰值电流,因为电路会在时钟沿之后立即切换(图1)。例如,一个平均电流为4 A的100 MHz器件实际上可能在时钟周期的前几纳秒内需要20 A的电流。显然,为此电路配备20 A电源将增加最终产品的尺寸和成本。不太明显的是,PCB走线和组件引脚的串联电感可能使单片电源无法足够迅速地响应以满足瞬时电流需求。如果设备没有足够的电流容量,它将经历电压降和接地反弹的某种组合。这些现象通常表现为高频噪声。去耦电容器通过提供经由低阻抗(即,低电感)路径可访问的分布式工作电流源来解决这些问题。实际上,去耦电容直接为数字设备供电,而主电源则为电容充电。电容器去耦网络成功设计的关键是选择正确的电容器并使用正确的布局。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号