...
首页> 外文期刊>Polar Geography >APPLICATION OF SATELLITE REMOTE SENSING TECHNIQUES TO FROZEN GROUND STUDIES
【24h】

APPLICATION OF SATELLITE REMOTE SENSING TECHNIQUES TO FROZEN GROUND STUDIES

机译:卫星遥感技术在冻土研究中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Permafrost and seasonally frozen ground regions occupy approximately 24% and 55%, respectively, of the exposed land surface in the Northern Hemisphere. The areal extent, timing, duration, and depth of the near-surface soil freeze and thaw have a significant impact on plant growth, energy, and water and trace gas exchanges between the atmosphere and the soils in cold seasons/cold regions. Satellite remote sensing combined with ground "truth" measurements have been used to investigate seasonally frozen ground and permafrost at local to regional scales with some success. The objective of this paper is to provide an overview of satellite remote sensing techniques applied to study seasonally frozen ground and permafrost over the last few decades. Remote sensing of permafrost terrain and surface freeze/thaw cycles typically uses a combination of imaging in optical and thermal wavelengths, passive microwave sensing, and active microwave remote sensing using scatterometer and Synthetic Aperture Radar (SAR). No single sensor is capable of providing the range of observations needed. SAR imaging provides information on the timing, duration, and regional progression of the near-surface soil freeze/thaw status in cold seasons/regions with a relatively high spatial resolution, but repeat times of existing satellites are relatively long compared to the rate of change of the soil freeze/thaw cycle in fall and spring. Spaceborne passive microwave sensors offer more frequent coverage at several wavelengths, but with substantially lower spatial resolution. Optical and thermal sensors provide a middle ground in spatial resolution and temporal sampling between SAR and passive microwave satellites, but a known relationship between permafrost (and freeze/thaw depth) and corresponding environmental factors needs to be provided. Overall, microwave remote sensing is a promising technique for detecting near-surface soil freeze/thaw cycles over snow-free land. The potential for using land surface temperature derived from satellite visible and near-infrared sensors to study soil freezing and thawing processes is substantial. Satellite remote sensing data products—such as for snow cover extent, snow depth, snowmelt, land surface type, Normalized Difference Vegetation Index (NDVI), surface albedo, surface wetness, and soil moisture—can be very helpful for frozen ground studies at local, regional, and global scales.
机译:永久冻土和季节性冻结的地面区域分别占北半球裸露土地表面的约24%和55%。近地表土壤冻结和融化的面积,时间,持续时间和深度对植物生长,能量以及在寒冷季节/寒冷地区大气与土壤之间的水和微量气体交换具有重大影响。卫星遥感与地面“真相”测量相结合已用于调查局部到区域尺度的季节性冻结地面和多年冻土,并取得了一些成功。本文的目的是概述过去几十年来应用于研究季节性冻土和多年冻土的卫星遥感技术。多年冻土地形和地表冻结/融化周期的遥感通常结合使用光波长和热波长成像,无源微波感测和使用散射仪和合成孔径雷达(SAR)的有源微波遥感相结合。没有任何一个传感器能够提供所需的观测范围。 SAR成像可提供有关空间分辨率较高的寒冷季节/地区近地表土壤冻结/融化状态的时间,持续时间和区域进展的信息,但与变化率相比,现有卫星的重复时间相对较长和春季土壤冻结/融化周期的变化。星载无源微波传感器在多个波长上提供了更频繁的覆盖范围,但空间分辨率却大大降低。光学和热传感器在SAR和无源微波卫星之间的空间分辨率和时间采样方面提供了中间地带,但是永久冻土(和冻结/融化深度)与相应的环境因素之间的已知关系必须提供。总体而言,微波遥感技术是检测无雪土地上近地表土壤冻结/融化周期的一种有前途的技术。利用来自卫星可见光和近红外传感器的地表温度研究土壤冻结和解冻过程的潜力很大。卫星遥感数据产品,如积雪范围,积雪深度,融雪,土地表面类型,归一化植被指数(NDVI),地表反照率,地表湿度和土壤湿度等,对于当地的冻土研究非常有用。 ,区域和全球规模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号