...
首页> 外文期刊>Plasma Science, IEEE Transactions on >Beamline Optimization for 100-keV Diagnostic Neutral Beam Injector for ITER
【24h】

Beamline Optimization for 100-keV Diagnostic Neutral Beam Injector for ITER

机译:用于ITER的100keV诊断中性束注入器的束线优化

获取原文

摘要

The 100-kV negative-hydrogen-ion-source-based diagnostic neutral beam (NB) (DNB) injector, which forms a part of the Indian (IN) procurement package for ITER, targets a delivery of ~18-20 A of neutral hydrogen-atom beam current into the ITER torus for charge exchange resonance spectroscopy diagnostics. Considering stripping losses, a ~70-A negative ion current is required to be extracted from the ion source, which leads to a production of 60 A of accelerated ion beam. Subsequent process of neutralization, electrostatic ion separation, and transport to the duct leads to a large separation between the points of generation of the ion beam to the point of delivery of the NB into the torus (~23 m). This forms one of the most important constraints for the transport of NBs to ITER. The requirements are not only for a stringent control over ion optics, the transport to electrostatic separator, minimum loss of beam due to intercepting elements, low reionization loss, and focusing to control interception losses but also for adequate compensation of residual magnetic fields to overcome magnetic field induced deflections also form important design issues for a reasonable transmission efficiency. Due to multiparameter dependence, it becomes necessary to assess the different scenarios using numerical codes. In the present case, the assessment has been carried out for the DNB using the beam-transport codes PDP, BTR, and the MCGF codes which are developed by the Russian Federation. An optimized configuration of the beamline has been arrived at on the basis of these code-enabled studies. These parameters are the following: listing of the vertical and horizontal focal lengths as 20.6 m, a spacing between ground grid and neutralizer of 1 m, and positioning of residual-ion dump at a distance of 0.75 m from the neutralizer exit. Further, optimizing the gas feed to the source and neutralizer leads to a final transmission of ~35% of the extracted beam power to the torus. This paper shall -npresent the methodology, the issues concerned, and the final configuration which forms the basis for the present engineering.
机译:基于100 kV负氢离子源的诊断中性束(NB)(DNB)喷油器,构成了ITER印度(IN)采购计划的一部分,目标是交付约18-20 A的中性氢原子束电流流入ITER环面,以进行电荷交换共振光谱诊断。考虑到剥离损耗,需要从离子源中提取约70A的负离子电流,这会产生60 A的加速离子束。随后的中和过程,静电离子分离以及向管道的传输导致离子束的产生点与NB进入圆环的输送点(〜23 m)之间的较大分离。这形成了将NB运送到ITER的最重要限制之一。这些要求不仅是对离子光学的严格控制,向静电分离器的传输,由于拦截元件造成的束流损失最小,电离损失低以及聚焦以控制拦截损失,而且还要求对残余磁场进行充分补偿以克服磁场场致偏转也形成了重要的设计问题,以实现合理的传输效率。由于存在多参数依赖性,因此有必要使用数字代码评估不同的情况。在当前情况下,已经使用俄罗斯联邦开发的波束传输代码PDP,BTR和MCGF代码对DNB进行了评估。在这些启用代码的研究的基础上,得出了光束线的优化配置。这些参数如下:列出垂直焦距和水平焦距为20.6 m,接地栅格和中和器之间的间距为1 m,以及残留离子堆的位置距中和器出口0.75 m。此外,优化送入气源和中和器的气体会导致最终提取的束功率的35%最终传递到圆环。本文将介绍构成本工程基础的方法,相关问题和最终配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号