首页> 外文期刊>Plasma Chemistry and Plasma Processing >Effect of Cathode Nozzle Geometry and Process Parameters on the Energy Distribution for an Argon Transferred Arc
【24h】

Effect of Cathode Nozzle Geometry and Process Parameters on the Energy Distribution for an Argon Transferred Arc

机译:阴极喷嘴几何形状和工艺参数对氩转移弧能量分布的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The influence of two nozzle geometries and three process parameters (arc current, arc length and plasma sheath gas flow rate) on the energy distribution for an argon transferred arc is investigated. Measurements are reported for a straight bore cylindrical and for a convergent nozzle, with arc currents of 100 A and 200 A and electrode gaps of 10 mm and 20 mm. These correspond to typical operating parameters generally used in plasma transferred arc cutting and welding operations. The experimental set up consisted of three principal components: the cathode-torch assembly, the external, water-cooled anode, and the reactor chamber. For each set of measurements the power delivered to each system component was measured through calorimetric means, as function of the arc’s operating conditions. The results obtained from this study show that the shape of the cathode torch nozzle has an important influence on arc behaviour and on the energy distribution between the different system components. A convergent nozzle results in higher arc voltages, and consequently, in higher powers being generated in the discharge for the same applied arc current, when compared to the case of a straight bore nozzle. This effect is attributed to the fluidynamic constriction of the arc root attachment, and the consequential increase in the arc voltage and thus, in the Joule heating. The experimental data so obtained is compared with the predictions of a numerical model for the electric arc, based on the solution of the Navier–Stokes and Maxwell equations, using the commercial code FLUENT?. The original code was enhanced with dedicated subroutines to account for the strong temperature dependence of the thermodynamic and transport properties under plasma conditions. The computational domain includes the heat conduction within the solid electrodes and the arc-electrode interactions, in order to be able to calculate the heat distribution in the overall system. The level of agreement achieved between the experimental data and the model predictions confirms the suitability of the proposed, “relatively simple” model as a tool to use for the design and optimization of transferred arc processes and related devices. This conclusion was further supported by spectroscopic measurements of the temperature profiles present in the arc column and image analysis of the intensity distribution within the arc, under the same operating conditions.
机译:研究了两个喷嘴几何形状和三个工艺参数(电弧电流,电弧长度和等离子鞘气流速)对氩气转移电弧能量分布的影响。据报道,测量的是直孔圆柱体和会聚喷嘴,电弧电流为100 A和200 A,电极间隙为10 mm和20 mm。这些对应于通常在等离子转移电弧切割和焊接操作中使用的典型操作参数。实验装置由三个主要部分组成:阴极炬管组件,外部水冷阳极和反应室。对于每组测量,根据电弧的工作条件,通过量热法测量传递到每个系统组件的功率。从这项研究中获得的结果表明,阴极炬喷嘴的形状对电弧行为和不同系统组件之间的能量分布有重要影响。与直孔喷嘴的情况相比,会聚的喷嘴导致较高的电弧电压,因此,对于相同的施加电弧电流,在放电中会产生较高的功率。该效应归因于电弧根部附接的流体动力学收缩,以及电弧电压的相应增加,并因此在焦耳加热中的增加。基于商业代码FLUENT ?,根据Navier-Stokes和Maxwell方程的解,将这样获得的实验数据与电弧数值模型的预测进行比较。原始代码已通过专用子例程进行了增强,以解决等离子体条件下热力学和传输特性对温度的强烈依赖性。计算域包括固体电极内的热传导和电弧电极的相互作用,以便能够计算整个系统中的热量分布。实验数据与模型预测之间达成的协议水平证实了所提议的“相对简单”的模型是否适合用作设计和优化转移电弧工艺及相关设备的工具。在相同的工作条件下,对电弧柱中存在的温度分布进行光谱测量并对电弧内强度分布进行图像分析,进一步支持了这一结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号