...
首页> 外文期刊>Plant Physiology >Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphigidae) and Its Natural Host Nicotiana attenuata. VIII. An Unbiased GCxGC-ToFMS Analysis of the Plant's Elicited Volatile Emissions
【24h】

Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphigidae) and Its Natural Host Nicotiana attenuata. VIII. An Unbiased GCxGC-ToFMS Analysis of the Plant's Elicited Volatile Emissions

机译:专业食草动物天蛾(鳞翅目,天蛾科)与其天然寄主烟草弱毒株之间的分子相互作用。八。植物的挥发性挥发物的无偏GCxGC-ToFMS分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Treating wounds in Nicotiana attenuata leaves with Manduca sexta oral secretions (W+OS) mimics most changes elicited by M. sexta herbivory, but an unbiased analysis of the effect of the different OS constituents on volatile emissions is lacking. We used two-dimensional gas chromatography/time-of-flight (GCxGC-ToF) mass spectrometry combined with multivariate statistics to parse volatiles into regulatory patterns. Volatiles released by wounding alone and by the alkalinity of OS were assessed by applying a buffer known to mimic the pH-mediated changes of OS elicitation (pectin methyl esterase activation and methanol release). The activities of fatty acid amino acid conjugates, well-known elicitors of antiherbivore defenses, and of 2-hydroxyoctadecatrienoic acid, a newly discovered signal in OS, were determined. Approximately 400 analytes were detected after deconvolution and alignment of GCxGC data; 35 volatiles were significantly regulated upon W+OS. Two-thirds of these were specifically regulated by OS, being either amplified (most terpenoids and certain hexenylesters) or strongly repressed (many short-chain alcohols and some aromatic and hexenylester derivatives). Fatty acid amino acid conjugates played a central role in this pattern of regulation, since they induced the emission of half of OS-elicited volatiles and inhibited the production of almost all OS-repressed volatiles; 2-hydroxyoctadecatrienoic acid influenced emission of trans--bergamotene, while other unknown OS constituents amplified hexenylester production. We conclude that the complex bouquet of herbivory-elicited volatiles results from the complex modulations of the wound response by diverse cues found in OS. This work also underscores the value of ultra-high-resolution GCxGC-ToF analysis combined with the nontargeted mining of the resulting data. nnnn--------------------------------------------------------------------------------nPlants employ a complex arsenal of defense mechanisms to protect themselves from insect herbivores. In addition to constitutive defenses such as trichomes or thick secondary walls, plants also use induced defenses, which are deployed specifically when herbivores start to chew on a leaf (Karban and Baldwin, 1997). These conditional responses allow plants to forgo the costs of defense production (Zavala et al., 2004) and optimize their ability to compete with neighboring plants or to tolerate the damage of resistant herbivores (Stowe et al., 2000; Schwachtje et al., 2006). Induced defenses function either directly via the production of amino acid-catabolizing enzymes, antidigestive proteinase inhibitors, or toxic and repelling chemicals that render plant tissues less suitable as food for herbivores (Duffey and Stout, 1996) or indirectly through traits that increase the apparency of infested plants to the natural enemies of their herbivores (Karban and Baldwin, 1997; Pare and Tumlinson, 1999). nAn intensively studied example of an inducible indirect defense is the production and emission of volatile organic compounds (VOCs) by plants attacked by insects (for review, see Turlings and Wäckers, 2004). The first complete evidence that plants use odors to attract natural enemies of their predators was obtained from studies on plant-mite interactions (Sabelis and van de Baan, 1983; Dicke et al., 1988; Dicke et al., 1990a, 1990b). These first studies and many since, performed under optimized laboratory conditions (Dicke, 1994; Mattiacci et al., 1995 Alborn et al., 1997; Turlings et al., 1990, 1991a, 1991b, 1998) or under field conditions (Shimoda et al., 1997; De Moraes et al., 1998; Bernasconi Ockroy et al., 2001; Kessler and Baldwin, 2001), have demonstrated that parasitoids and predators make effective use of herbivory-induced plant VOCs (HIPV) to locate their prey. Certain of these volatiles have notably been shown to decrease oviposition rates and increase egg predation on the emitting plant (Feeny et al., 1989; Kessler and Baldwin, 2001; Colazza et al., 2004; Johne et al., 2006). Moreover, some of these plant odors can also serve as direct repellents against insect herbivores (Quiroz et al., 1997; Bernasconi et al., 1998; Landolt et al., 1999). In addition, the volatiles can be perceived by neighboring plants and increase or potentiate their defensive abilities (Arimura et al., 2000a, 2000b; Baldwin et al., 2006; Kessler et al., 2006; Kost and Heil, 2006). On the other hand, volatile signaling is also used by some plant species to overcome the vascular constraints on systemic signaling to elicit defense responses in adjacent leaves with little or no vascular connection with the attacked leaves (Frost et al., 2007). nnDespite their common feature of being volatile at ambient temperatures, these major players of plant signaling are chemically highly diverse (Holopainen, 2004). HIPV bursts have been partially characterized in several plant species (for overview, see van Poecke and Dicke, 2004; Van Dam and Poppy, 2008), including, for instance, maize (Zea mays), cotton (Gossypium hirsutum), lima bean (Phaseolus lunatus), and native tobacco (Nicotiana attenuata). The major constituents of these VOC bouquets consist of products of the shikimic acid pathway, terpenes and fatty acid (FA) derivatives. The best characterized metabolites from this latter subpopulation are the green leaf volatiles (GLVs), originating from the degradation of C18 FAs (linolenic and linoleic acids) when hydroperoxidated by a lipoxygenase and cleaved into C12 and C6 units by a hydroperoxide lyase (Halitschke et al., 2004; Matsui, 2006). nnFatty acid amino acid conjugates (FACs), produced in the insect gut by conjugation of host-derived FAs to amino acids (Spiteller et al., 2000) and contained in the oral secretions (OS) of many caterpillar species, were the first nonenzymatic elicitors of HIPV characterized (Alborn et al., 1997; Halitschke et al., 2001). More generally, recent "omic" approaches have demonstrated that FACs are responsible for eliciting a large portion of the hundreds of genes regulated during the plant-herbivore interaction (Halitschke et al., 2003; Roda et al., 2004) as well as the reconfiguration of the proteome (Giri et al., 2006). However, such untargeted analyses have not been conducted for HIPV, and until now the regulation of only a few components of plants' volatile blends (e.g. trans--bergamotene in N. attenuata [Halitschke et al., 2001] and hexenylacetate or trans-β-farnesene in maize [Alborn et al., 1997]) has been associated with FAC signaling. nnNotably, FACs are not always active: in lima bean and cowpea (Vigna unguiculata), for instance, FAC treatment of wounds does not elicit VOCs (Spiteller et al., 2001). Rather, Mithöfer et al. (2005) demonstrated that a continuous wounding treatment that resembled insect feeding was sufficient for HIPV emission. In cowpea, inceptin, an elicitor produced from the postingestive digestion of host plant ATP synthase, triggers changes in phytohormone and VOC production similar to those detected during herbivory (Schmelz et al., 2006; Carroll et al., 2008). In N. attenuata, the large methanol burst, which is many times larger than the GLV burst elicited by Manduca sexta herbivory, originates from the demethylation of pectin cell walls and in turn is elicited by the alkalinity of OS (von Dahl et al., 2006). β-Glucosidase hydrolytic enzymes from Pieris brassicae OS also trigger HIPV emissions when applied to cabbage (Brassica capitata) plants (Mattiacci et al., 1995). 2-Hydroxyoctadecatrienoic acid (2-HOT) is a newly identified component of M. sexta OS (E. Gaquerel, A. Steppuhn, and I.T. Baldwin, unpublished data). This oxylipin is produced from linolenic acid through the action of the -dioxygenase (-DOX; Hamberg et al., 2002, 2003). In N. attenuata, the production of 2-HOT during herbivory and its accumulation in OS allow the plant to monitor the progression of the insect's attack and to sustain its production of jasmonic acid, the central hormone that coordinates antiherbivore defenses. The striking postingestive stability and high activity of N. attenuata's -DOX1 proteins in the alkaline and proteolytic milieu of the M. sexta midgut mediates 2-HOT's particular signaling role (E. Gaquerel, A. Steppuhn, and I.T. Baldwin, unpublished data). nnGiven the rapid advances in characterizing the active elicitors of M. sexta OS, a full unbiased analysis of N. attenuata's HIPV blend, an analysis that has not been conducted for any plant, is overdue. To examine the extent to which FACs, 2-HOT, and alkalinity contribute to the OS-elicited HIPV bouquet, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC-ToFMS) in combination with multivariate statistics. This nontargeted approach was applied to a suite of elicitation treatments in which the amount of mechanical wounding was held constant.
机译:用曼杜卡六倍体口腔分泌物(W + OS)处理减毒烟草叶片上的伤口可模拟六倍体食草分枝杆菌引起的大多数变化,但缺乏对不同OS成分对挥发物排放的影响的公正分析。我们将二维气相色谱/飞行时间(GCxGC-ToF)质谱与多元统计数据结合使用,将挥发物解析为调控模式。通过应用已知可模拟pH介导的OS诱变(果胶甲基酯酶活化和甲醇释放)的缓冲液,评估单独受伤和OS碱度释放的挥发物。确定了脂肪酸氨基酸缀合物,抗草食动物防御的著名引发剂和2-羟基十八碳三烯酸(OS中新发现的信号)的活性。对GCxGC数据进行解卷积和比对后,检测到大约400种分析物。 W + OS显着调节了35种挥发物。其中三分之二受OS特异性调节,要么被放大(大多数萜类化合物和某些己烯基酯),要么被强烈抑制(许多短链醇以及一些芳族和己烯基酯衍生物)。脂肪酸氨基酸共轭物在这种调节模式中起着核心作用,因为它们诱导了一半由OS引起的挥发物的排放并抑制了几乎所有被OS抑制的挥发物的产生。 2-羟基十八碳三烯酸影响反式佛手柑的发射,而其他未知的OS成分则增加了己烯基酯的产生。我们得出的结论是,由食草动物引起的挥发物的复杂花束是由于OS中发现的各种线索对伤口反应的复杂调节所致。这项工作还强调了超高分辨率GCxGC-ToF分析与结果数据的非目标挖掘相结合的价值。 nnnn ------------------------------------------------- ------------------------------- n植物采用复杂的防御机制来保护自己免受昆虫食草动物的侵害。除了诸如毛状体或厚厚的次生壁之类的本构防御之外,植物还使用诱导防御,这种防御特别在草食动物开始咀嚼叶子时进行部署(Karban和Baldwin,1997)。这些条件反应使植物放弃了防御生产的成本(Zavala等,2004),并优化了它们与邻近植物竞争或耐受抗性草食动物的能力(Stowe等,2000; Schwachtje等, 2006)。诱导的防御作用直接通过产生氨基酸分解酶,抗消化蛋白酶抑制剂或有毒和排斥化学物质而起作用,这些化学物质使植物组织不适合用作草食动物的食物(Duffey和Stout,1996年),或者间接地通过增加植物表观性的性状间接发挥作用。向食草动物的天敌侵染植物(Karban和Baldwin,1997; Pare和Tumlinson,1999)。 n关于诱导型间接防御的一个深入研究的例子是被昆虫攻击的植物产生和释放挥发性有机化合物(VOC)(综述,请参见Turlings和Wäckers,2004年)。从植物与螨虫相互作用的研究中获得了植物利用气味吸引天敌的第一个完整证据(Sabelis和van de Baan,1983; Dicke等,1988; Dicke等,1990a,1990b)。这些最初的研究以及以后的许多研究都是在优化的实验室条件下(Dicke,1994; Mattiacci等,1995 Alborn等,1997; Turlings等,1990,1991a,1991b,1998)或在野外条件下(Shimoda等)进行的。等人,1997; De Moraes等,1998; Bernasconi Ockroy等,2001; Kessler和Baldwin,2001)证明了寄生物和掠食者有效利用了草食性植物VOC(HIPV)来定位猎物。 。这些挥发性物质中的某些已经显着降低产卵率并增加发光植物上的卵捕食(Feeny等,1989; Kessler和Baldwin,2001; Colazza等,2004; Johne等,2006)。此外,这些植物气味中的一些还可以作为对昆虫食草动物的直接驱除剂(Quiroz等,1997; Bernasconi等,1998; Landolt等,1999)。此外,挥发物可以被邻近植物感知并增强或增强其防御能力(​​Arimura等,2000a,2000b; Baldwin等,2006; Kessler等,2006; Kost和Heil,2006)。另一方面,一些植物物种还利用挥发性信号传导来克服系统性信号传导中的血管限制,从而在与受侵害的叶片之间几乎没有或没有血管连接的相邻叶片中引发防御反应(Frost et al。,2007)。尽管它们在环境温度下具有挥发性的共同特征,但这些植物信号的主要参与者在化学上却高度多样化(Holopainen,2004)。 HIPV爆发在几种植物中都有部分特征(有关概述,请参见van Poecke和Dicke,2004; Van Dam和Poppy,2008)。包括,例如玉米(Zea mays),棉花(Gossypium hirsutum),利马豆(Phaseolus lunatus)和天然烟草(Nicotiana detecta)。这些VOC花束的主要成分包括the草酸途径,萜烯和脂肪酸(FA)衍生物的产物。后一个亚群中最具特征的代谢产物是绿叶挥发物(GLV),其源自脂氧合酶加氢过氧化并被氢过氧化物裂解酶裂解成C12和C6单元时C18 FAs(亚麻酸和亚油酸)的降解(Halitschke等人) (2004年;松井,2006年)。 nn脂肪酸氨基酸共轭物(FACs)是昆虫肠道中通过将宿主衍生的FAs与氨基酸结合而产生的(Spiteller等人,2000),并包含在许多毛毛虫物种的口腔分泌物中(OS),是第一种非酶促HIPV的激发子的特征在于(Alborn等,1997; Halitschke等,2001)。更普遍地讲,最近的“组学”方法已经证明,FAC负责引发植物-草食动物相互作用期间调控的数百个基因的很大一部分(Halitschke等,2003; Roda等,2004)以及蛋白质组的重新配置(Giri等,2006)。但是,尚未针对HIPV进行这种无针对性的分析,直到现在,植物的挥发性混合物中只有少数成分受到调节(例如,淡色猪笼草中的反式佛手柑[Halitschke等人,2001]和乙酸己烯酯或反式玉米中的β-法尼烯[Alborn et al。,1997]已与FAC信号转导相关。 nn值得注意的是,FAC并不总是活跃的:例如,在利马豆和cow豆(Vigna unguiculata)中,FAC对伤口的治疗不会引起VOC(Spiteller等,2001)。相反,Mithöfer等。 (2005)证明,类似于昆虫喂食的连续伤口处理足以释放HIPV。在cow豆中,inceptin是宿主植物ATP合酶的postestivetive消化产生的一种引发剂,其触发植物激素和VOC产生的变化与在食草期间检测到的变化相似(Schmelz等,2006; Carroll等,2008)。在弱毒猪笼草中,大的甲醇爆发是果胶细胞壁脱甲基化的结果,而甲醇的爆发则比果蝇Manduca sexta草食性引发的GLV爆发大许多倍,而OS的碱度则引发了这种爆发(von Dahl等, 2006)。当将其应用于甘蓝(Brassica capitata)植物时,来自菜青虫皮氏菌OS的β-葡萄糖苷酶水解酶也会触发HIPV排放(Mattiacci等,1995)。 2-羟基十八碳三烯酸(2-HOT)是新发现的M. sexta OS成分(E. Gaquerel,A。Steppuhn和I.T. Baldwin,未公开数据)。该亚麻素通过-双加氧酶的作用由亚麻酸产生(-DOX; Hamberg等,2002,2003)。在减毒猪笼草中,除草过程中2-HOT的产生及其在OS中的积累使植物能够监测昆虫的攻击进程并维持其茉莉酸的产生,茉莉酸是协调抗草食动物防御的中枢激素。六分球菌中肠碱性和蛋白水解环境中的减毒猪笼草-DOX1蛋白具有惊人的postestive稳定性和高活性,可调节2-HOT的特殊信号传导作用(E. Gaquerel,A。Steppuhn和IT T. Baldwin,未发表的数据)。 nn。鉴于在表征M. sexta OS的活性引发剂方面取得了快速进展,因此对衰减无奈猪笼草的HIPV混合物的完整无偏分析(该分析尚未针对任何植物进行)已经过时了。为了检查FAC,2-HOT和碱度对OS引发的HIPV束的影响程度,我们使用了全面的二维气相色谱/飞行时间质谱(GCxGC-ToFMS)和多元统计数据。这种非针对性的方法应用于一系列诱因治疗,其中机械伤的数量保持恒定。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号