首页> 外文期刊>Plant Growth Regulation >Tissue culture in synthetic atmospheres: diffusion rate effects on cytokinin-induced callus growth and isoflavonoid production in soybean [Glycine max (L.) Merr. cv. Acme]
【24h】

Tissue culture in synthetic atmospheres: diffusion rate effects on cytokinin-induced callus growth and isoflavonoid production in soybean [Glycine max (L.) Merr. cv. Acme]

机译:合成气氛中的组织培养:扩散速率对大豆细胞分裂素诱导的愈伤组织生长和异黄酮生成的影响[Glycine max(L.)Merr。简历。 Acme]

获取原文
获取原文并翻译 | 示例
           

摘要

Concentration is one factor that is known to determine how metabolic gases influence the growth and secondary metabolism of plant tissues in culture. How actual gas bioavailability influences these processes has not been studied despite its potential importance in specialized applications. A simple model system, soybean [Glycine max (L.) Merr. cv. Acme] callus culture, was selected for experiments because exogenous cytokinin (6-benzylaminopurine; BAP) elicits two types of responses: (1) enhanced callus proliferation, and (2) rapid induction of the isoflavonoid daidzein (7,4′-dihydroxyisoflavone). Synthetic atmospheres supplying metabolic gases with higher or lower bioavailability than in air were created by replacing the nitrogen moiety in standard air with either helium or argon, respectively. Callus was cultured on agar or in liquid shake cultures according to standard procedures. At an optimal cytokinin concentration for stimulation of callus proliferation, 4.4 × 10−7 M BAP, increased diffusion rates for the metabolic gases resulted in greater weight gain in agar cultures. Weight gain was 11% higher for He-treated and 39% lower for Ar-treated cultures than for the nitrogen control. In contrast, there was no significant effect of metabolic gas diffusion rate on daidzein production in either agar or liquid cultures. Apart from the potential application of these synthetic atmospheres for enhancing plant tissue culture growth, they may have unique value for the space program as an effective way of replicating the gas exchange limitations posed for plants by microgravity (Ar atmosphere), and as a countermeasure for this limitation (He atmosphere).
机译:浓度是确定代谢气体如何影响培养中植物组织的生长和次生代谢的因素之一。尽管实际的气体生物利用度在特殊应用中具有潜在的重要性,但尚未对其进行研究。一个简单的模型系统,大豆[Glycine max(L.)Merr。简历。选择Acme]愈伤组织培养进行实验是因为外源性细胞分裂素(6-苄基氨基嘌呤; BAP)引起两种类型的反应:(1)愈伤组织增殖增强,和(2)快速诱导异黄酮黄豆苷元(7,4'-二羟基异黄酮) 。通过分别用氦气或氩气代替标准空气中的氮部分,从而形成了提供比空气更高或更低生物利用度的代谢气体的合成气氛。根据标准程序在琼脂或液体摇动培养物中培养愈伤组织。在刺激愈伤组织增殖的最佳细胞分裂素浓度为4.4×10-7 M BAP时,代谢气体扩散速率的增加导致琼脂培养物中体重增加。与氮控制相比,He处理的体重增加了11%,Ar处理的培养物减少了39%。相反,在琼脂或液体培养物中,代谢气体扩散速率对黄豆苷元生成没有明显影响。除了这些合成气氛在增强植物组织培养生长方面的潜在应用外,它们对于空间计划可能具有独特的价值,可以作为一种有效的方法来复制因微重力(Ar气氛)对植物造成的气体交换限制,并且可以作为对策。这个限制(他的气氛)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号