首页> 外文期刊>Plant and Cell Physiology >Characterization of the Selenite Uptake Mechanism in the Coccolithophore Emiliania huxleyi (Haptophyta)
【24h】

Characterization of the Selenite Uptake Mechanism in the Coccolithophore Emiliania huxleyi (Haptophyta)

机译:球石藻Emililiania huxleyi(Haptophyta)中亚硒酸盐吸收机制的表征

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The marine coccolithophore Emiliania huxleyi (Haptophyta) requires selenium as an essential element for growth, and the active species absorbed is selenite, not selenate. This study characterized the selenite uptake mechanism using 75Se as a tracer. Kinetic analysis of selenite uptake showed the involvement of both active and passive transport processes. The active transport was suppressed by 0.5 mM vanadate, a membrane-permeable inhibitor of H+-ATPase, at pH 8.3. When the pH was lowered from 8.3 to 5.3, the selenite uptake activity greatly increased, even in the presence of vanadate, suggesting that the H+ concentration gradient may be a motive force for selenite transport. [75Se]Selenite uptake at selenite-limiting concentrations was hardly affected by selenate, sulfate and sulfite, even at 100 μM. In contrast, 3 μM orthophosphate increased the Km 5-fold. These data showed that HSeO3−, a dominant selenite species at acidic pH, is the active species for transport through the plasma membrane and transport is driven by ΔpH energized by H+-ATPase. Kinetic analysis showed that the selenite uptake activity was competitively inhibited by orthophosphate. Furthermore, the active selenite transport mechanism was shown to be induced de novo under Se-deficient conditions and induction was suppressed by the addition of either sufficient selenite or cycloheximide, an inhibitor of de novo protein synthesis. These results indicate that E. huxleyi cells developed an active selenite uptake mechanism to overcome the disadvantages of Se limitation in ecosystems, maintaining selenium metabolism and selenoproteins for high viability.
机译:海洋球石藻Emiiliania huxleyi(Haptophyta)需要硒作为生长的必需元素,吸收的活性物质是亚硒酸盐,而不是硒酸盐。本研究利用 75 Se作为示踪剂表征了亚硒酸盐的吸收机理。对亚硒酸盐吸收的动力学分析表明,主动和被动运输过程都参与其中。在pH 8.3下,0.5 mM钒酸盐(一种可透过膜的H + -ATPase抑制剂)抑制了主动转运。当pH从8.3降至5.3时,即使存在钒酸盐,亚硒酸盐的吸收活性也大大提高,这表明H + 浓度梯度可能是亚硒酸盐运输的动力。 [ 75 Se]亚硒酸盐限制浓度下的亚硒酸盐吸收几乎不受硒酸盐,硫酸盐和亚硫酸盐的影响,即使在100μM时也是如此。相反,3μM正磷酸盐使K m 增加5倍。这些数据表明,HSeO 3 -是酸性pH值下的主要亚硒酸盐物种,是通过质膜转运的活性物种,并且由H < sup> + -ATPase。动力学分析表明,正磷酸盐可竞争性抑制亚硒酸盐的摄取活性。此外,显示出在硒缺乏条件下从头诱导了活性亚硒酸盐转运机制,并且通过添加足够的亚硒酸盐或环己酰亚胺(从头蛋白质合成的抑制剂)抑制了诱导。这些结果表明,赫hu黎大肠杆菌细胞发展出一种积极的亚硒酸盐吸收机制,以克服硒在生态系统中的局限性,维持硒代谢和硒蛋白的高生存能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号