首页> 外文期刊>Planetary and space science >Artifact formation during Raman measurements and its relevance to the search for chemical biosignatures on Mars
【24h】

Artifact formation during Raman measurements and its relevance to the search for chemical biosignatures on Mars

机译:拉曼测量过程中的伪像形成及其与在火星上寻找化学生物特征的相关性

获取原文
获取原文并翻译 | 示例
           

摘要

Raman spectroscopy will be a powerful tool in the in situ search for Martian biosignatures within the ESA/Roscosmos ExoMars and NASA Mars 2020 missions. However, a Raman laser can alter the chemical nature of a sample. This prompted us to investigate the stability of potential biosignatures during Raman measurements. For our study, we selected the photosynthetic pigment beta-carotene, the biological membrane component 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), the iron porphyrin hemin, and the electron transfer protein cytochrome c. The excitation wavelength was 532 nm, which is the wavelength at which the lasers of the RLS (ExoMars) and SuperCam (Mars 2020) instruments will operate. We found that A-carotene and DOPE were stable up to 7.0 mW, which was the maximum laser power in our experiments, corresponding to an irradiance of 378 kW/cm(2). Hemin and cytochrome c, by contrast, decomposed when the energy input exceeded a certain threshold. For example, hemin started to decompose in the 0.05-0.8 mW range (2.5-40 kW/cm(2)) under Mars-like conditions (200 K, vacuum, 50 s total irradiation time). Carbonaceous materials were the final decomposition products of both compounds. Our experiments also showed that low temperatures near the average Martian surface temperature of similar to 210 K can delay the decomposition of biomolecules. In addition to loose powders, we studied thin layers pressed on NaCl pellets, where NaCl served as a model mineral matrix. In the case of hemin and cytochrome c on NaCl, the measurements could be performed with higher laser powers because of more efficient heat dissipation by the salt. For comparison, spectra were also recorded under standard laboratory conditions, i.e., at room temperature and atmospheric pressure. A major conclusion of this work is that Raman lasers used on Mars may alter biomolecules by heating the sample and, in specific cases, transform them into carbonaceous matter. The resulting spectra may be misinterpreted as evidence of extinct rather than extant life or even as evidence of non-biological material.
机译:拉曼光谱仪将成为ESA / Roscosmos ExoMars和NASA 2020年火星探测器任务中就地搜索火星生物特征的强大工具。但是,拉曼激光可以改变样品的化学性质。这促使我们研究拉曼测量过程中潜在生物特征的稳定性。在我们的研究中,我们选择了光合色素β-胡萝卜素,生物膜成分1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE),铁卟啉血红素和电子转移蛋白细胞色素c。激发波长是532 nm,这是RLS(ExoMars)和SuperCam(Mars 2020)仪器的激光器将工作的波长。我们发现,A-胡萝卜素和DOPE在高达7.0 mW时稳定,这是我们实验中的最大激光功率,对应于378 kW / cm(2)的辐照度。相反,当能量输入超过特定阈值时,血红素和细胞色素c分解。例如,在类似火星的条件(200 K,真空,总照射时间为50 s)下,血红素开始在0.05-0.8 mW范围(2.5-40 kW / cm(2))中分解。碳质材料是两种化合物的最终分解产物。我们的实验还表明,接近平均火星表面温度(约210 K)的低温会延迟生物分子的分解。除了散粉外,我们还研究了压在NaCl颗粒上的薄层,其中NaCl用作模型矿物基质。在氯化钠上的血红素和细胞色素c的情况下,由于盐的散热效率更高,因此可以用更高的激光功率进行测量。为了比较,还在标准实验室条件下,即在室温和大气压下记录光谱。这项工作的主要结论是,火星上使用的拉曼激光可以通过加热样品来改变生物分子,在特定情况下,可以将其转化为碳质物质。产生的光谱可能被误解为灭绝的证据,而不是存在的生命,甚至被误解为非生物材料的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号