首页> 外文期刊>Planetary and space science >Numerical simulations of a Mars geodesy network experiment: Effect of orbiter angular momentum desaturation on Mars' rotation estimation
【24h】

Numerical simulations of a Mars geodesy network experiment: Effect of orbiter angular momentum desaturation on Mars' rotation estimation

机译:火星大地测量网络实验的数值模拟:轨道角动量去饱和对火星自转估计的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The scientific objectives of a geodetic experiment based on a network of landers, such as NEIGE (NEtlander Ionosphere and Geodesy Experiment) are to improve the current knowledge of Mars' interior and atmosphere dynamics. Such a network science experiment allows monitoring the motions of the Martian rotation axis with a precision of a few centimeters (or milli-arc-seconds (mas)) over annual and sub-annual periods. Thereto, besides radio tracking of a Mars orbiter from the Earth, radio Doppler shifts between this orbiter and several landers at the planet's surface will be performed. From the analysis of these radio Doppler data, it is possible to reconstruct the orbiter motion and Mars' orientation in space. The errors on the orbit determination (position and velocity of the orbiter) have an impact on the geodetic parameters determination from the Doppler shifts and must be removed from the signal in order to achieve a high enough accuracy. In this paper, we perform numerical simulations of the two Doppler signals involved in such an experiment to estimate the impact of the spacecraft angular momentum desaturations on the determination of Mars' orientation variations. The attitude control of the orbiter needs such desaturation maneuvers regularly repeated. They produce velocity variations that must be taken into account when determining the orbit. For our simulations, we use a priori models of the Martian rotation and introduce the spacecraft velocity variations induced by each desaturation event. By a least-squares adjustment of the simulated Doppler signals, we then estimate the orbiter velocity variations and the parameters of the Mars' rotation model. We show that these velocity variations are ill resolved when the spacecraft is not tracked, therefore requiring a near-continuous tracking from the Earth to accurately determine the orbit. In such conditions we show that only 15-20 min of lander-orbiter tracking per week allows recovering Mars' orientation parameters with a precision of a few mas over a period of 1 Martian year.
机译:基于诸如NEIGE(NEtlander电离层和大地测量实验)之类的着陆器网络的大地测量实验的科学目标是提高对火星内部和大气动力学的当前知识。这样的网络科学实验可以在每年和每半年的时间内以几厘米(或毫弧秒(mas))的精度监视火星旋转轴的运动。到此为止,除了从地球上对火星轨道器进行无线电跟踪外,还将执行在该轨道器与行星表面上的多个着陆器之间的无线电多普勒转换。通过对这些无线电多普勒数据的分析,可以重构轨道器运动和火星在空间中的方位。轨道确定中的误差(轨道器的位置和速度)会影响多普勒频移所确定的大地参数,因此必须从信号中将其删除,以实现足够高的精度。在本文中,我们对参与此实验的两个多普勒信号进行了数值模拟,以估算航天器角动量去饱和对确定火星方向变化的影响。轨道器的姿态控制需要定期进行这样的去饱和操作。它们产生的速度变化在确定轨道时必须予以考虑。对于我们的模拟,我们使用火星旋转的先验模型,并介绍了每个去饱和事件引起的航天器速度变化。通过对模拟的多普勒信号进行最小二乘平差,我们可以估算出轨道速度变化和火星自转模型的参数。我们表明,当不跟踪航天器时,这些速度变化将无法解决,因此需要从地球进行近乎连续的跟踪才能准确确定轨道。在这种情况下,我们证明,每周只有15-20分钟的着陆器轨道跟踪可以在1年的火星年内以几质量的精度恢复火星的定向参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号