...
首页> 外文期刊>Planetary and space science >Magnetic states of the ionosphere of Venus observed by Venus Express
【24h】

Magnetic states of the ionosphere of Venus observed by Venus Express

机译:金星Express观测到的金星电离层的磁态

获取原文
获取原文并翻译 | 示例

摘要

Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the "magnetopause" and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.
机译:太阳发出的强紫外线辐射使金星的高层大气电离,从而在行星的白天形成了致密的电离层。与地球相反,金星的电离层没有受到磁场保护而不受太阳风的影响。但是,带电的电离层粒子与太阳风的动态和磁压之间的相互作用会产生一个伪磁层,该磁层会偏转太阳风在行星周围的流动(Schunk and Nagy,1980)。太阳辐射强度和太阳风强度的变化共同导致电离层的结构和等离子体组成高度可变。金星快车的仪器可以测量上方电离层和电离层的磁场(MAG实验)以及电子能谱和离子组成(ASPERA-4实验)。与早期在太阳最高峰期间进行的先驱金星轨道(PVO)测量相反,在2006-2009年期间太阳活动非常低。与PVO的比较可以研究不同太阳风和EUV辐射条件下的电离层特性。分析了MAG和ASPERA的观测结果,确定了光电子边界(PEB)和“磁透顶”的位置以及它们对太阳天顶角(SZA)的依赖性。 PEB是使用电离层光电子的ELS观测值确定的,可以通过其比能范围来确定。特别有趣的是探索电离层的不同磁态,因为它们会影响局部等离子体的电导率,电流以及可能的电子和离子逸出。磁场对电离层的渗透取决于外部条件以及电离层的性质。通过使用两种不同方法的组合分析大量轨道,我们定义了判别所谓的磁化和非磁化电离层状态的标准。此外,我们确认电离层内部的平均磁场对PEB上方区域的磁场呈线性关系。

著录项

  • 来源
    《Planetary and space science 》 |2011年第4期| p.327-337| 共11页
  • 作者单位

    Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany;

    Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany;

    Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany;

    Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany;

    Swedish Institute of Space Physics, Kiruna, Sweden;

    Space Research Institute of the Austrian Academy of Sciences, Craz, Austria;

    Institute for Theoretical Physics, Technical University of Braunschweig, Germany, Institute of Planetary Research, DLR, Berlin, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    venus; ionosphere; magnetic field;

    机译:金星;电离层;磁场;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号