...
首页> 外文期刊>Planetary and space science >Possibility of H_2O_2 decomposition in thin liquid films on Mars
【24h】

Possibility of H_2O_2 decomposition in thin liquid films on Mars

机译:火星上液态薄膜中H_2O_2分解的可能性

获取原文
获取原文并翻译 | 示例

摘要

In this work the pathways and possibilities of H_2O_2 decomposition on Mars in microscopic liquid interfacial water were analyzed by kinetic calculations. Thermal and photochemical driven decomposition, just like processes catalyzed by various metal oxides, is too slow compared to the annual duration while such microscopic liquid layers exist on Mars today, to produce substantial decomposition. The most effective analyzed process is catalyzed by Fe ions, which could decompose H_2O_2 under pH < 4.5 with a half life of 1-2 days. This process might be important during volcanically influenced periods when sulfur release produces acidic pH, and rotational axis tilt change driven climatic changes also influence the volatile circulation and spatial occurrence just like the duration of thin liquid layer. Under current conditions, using the value of 200 K as the temperature in interfacial water (at the southern hemisphere), and applying Phoenix lander's wet chemistry laboratory results, the pH is not favorable for Fe mobility and this kind of decomposition. Despite current conditions (especially pH) being unfavorable for H_2O_2 decomposition, microscopic scale interfacial liquid water still might support the process. By the reaction called heterogeneous catalysis, without acidic pH and mobile Fe, but with minerals surfaces containing Fe decomposition of H_2O_2 with half life of 20 days can happen. This duration is still longer but not several orders than the existence of springtime interfacial liquid water on Mars today. This estimation is relevant for activation energy controlled reaction rates. The other main parameter that may influence the reaction rate is the diffusion speed. Although the available tests and theoretical calculations do not provide firm values for the diffusion speed in such a "2-dimensional" environment, using relevant estimations this parameter in the interfacial liquid layer is smaller than in bulk water. But the 20 days' duration mentioned above is still relevant, as the activation energy driven reaction rate is the main limiting factor in the decomposition and not the diffusion speed. The duration of dozen(s) days is still longer but not with orders of magnitude than the expected duration for the existence of springtime interfacial liquid water on Mars today. The results suggest such decomposition may happen today, however, because of our limited knowledge on chemical processes in thin interfacial liquid layers, this possibility waits for confirmation - and also points to the importance of conducting laboratory tests to validate the possible process. Although some tests were already realized for diffusion in an almost 2-dimensional liquid, the same is not true for activation energy, where only the value from the "normal" measurements was applied. Even if H_2O_2 decomposition is too slow today, the analysis of such a process is important, as under volcanic influence more effective decomposition might take place in thin interfacial liquids close to the climate of today if released sulfur produces pH < 4.5. Large quantity and widespread occurrence of bulk liquid phase are not expected in the Amazonian period, but interfacial liquid water probably appeared regularly, and its locations, especially during volcanically active periods, might make certain sites than others more interesting for astrobiology with the lower concentration of oxidizing H_2O_2.
机译:在这项工作中,通过动力学计算分析了H_2O_2在微观液体界面水中在火星上分解的途径和可能性。与由各种金属氧化物催化的过程一样,热和光化学驱动的分解与每年的持续时间相比太慢了,而如今在火星上却存在这种微小的液体层,无法产生实质性的分解。 Fe离子是最有效的分析过程,Fe离子可在pH <4.5时分解H_2O_2,半衰期为1-2天。在受硫释放产生酸性pH的火山影响期间,此过程可能很重要,而旋转轴倾斜变化驱动的气候变化也像薄液层的持续时间一样,也会影响挥发性循环和空间发生。在当前条件下,使用200 K作为界面水中的温度(在南半球),并应用Phoenix Lander的湿化学实验室结果,pH值不利于Fe的迁移和这种分解。尽管当前条件(特别是pH)不利于H_2O_2分解,但微观尺度的界面液态水仍可能支持该过程。通过这种称为非均相催化的反应,无需酸性pH值和可移动的Fe,但在矿物表面含有Fe的H_2O_2分解时,会发生20天的半衰期。这个持续时间仍比当今火星上春季界面液态水的存在更长,但不是几个数量级。该估计与活化能控制的反应速率有关。可能影响反应速率的另一个主要参数是扩散速度。尽管可用的测试和理论计算并未提供这种“二维”环境中扩散速度的可靠值,但使用相关估计,界面液体层中的此参数要比散装水中的参数小。但是上述20天的持续时间仍然有意义,因为活化能驱动的反应速率是分解的主要限制因素,而不是扩散速度。一打(s)天的持续时间仍比今天火星上存在春季界面液态水的预期持续时间更长,但数量级不高。结果表明这种分解可能会在今天发生,但是,由于我们对薄薄的界面液体层中化学过程的了解有限,这种可能性有待确认-并指出进行实验室测试以验证可能的过程的重要性。尽管已经针对在几乎二维的液体中扩散进行了一些测试,但对于激活能却并非如此,在激活能中,仅应用了来自“正常”测量的值。即使今天的H_2O_2分解速度太慢,分析这一过程也很重要,因为在火山影响下,如果释放的硫产生的pH值<4.5,则可能在接近今天气候的稀薄界面液中发生更有效的分解。在亚马逊时期,预计不会出现大量液相液相,但会大量出现,但是界面液态水可能会定期出现,而且其位置(尤其是在火山活动期)可能会使某些地点比其他地点更受天文生物学的关注,且浓度较低。氧化H_2O_2。

著录项

  • 来源
    《Planetary and space science 》 |2014年第11期| 153-166| 共14页
  • 作者

    Akos Kereszturi; Sandor Gobi;

  • 作者单位

    Konkoly Thege Miklos Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege M. 15-17, Hungary,New Europe School for Theoretical Biology and Ecology, Hungary,NASA Astrobiology Institute, TDE Focus Group;

    Konkoly Thege Miklos Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege M. 15-17, Hungary;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mars; Water; Oxidant; Regolith;

    机译:火星;水;氧化剂雷哥利斯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号