...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Spin dynamics in the Kitaev model with disorder: Quantum Monte Carlo study of dynamical spin structure factor, magnetic susceptibility, and NMR relaxation rate
【24h】

Spin dynamics in the Kitaev model with disorder: Quantum Monte Carlo study of dynamical spin structure factor, magnetic susceptibility, and NMR relaxation rate

机译:Kitaev模型中的旋转动态与紊乱:量子蒙特卡罗动态自旋结构因子研究,磁化率和NMR松弛率

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the impact of two types of disorder, bond randomness and site dilution, on the spin dynamics in the Kitaev model on a honeycomb lattice. The ground state of this model is a canonical quantum spin liquid with spin fractionalization into two types of quasiparticles, itinerant Majorana fermions and localized fluxes, for which the spin dynamics provides a good probe of the fractionalization. Using unbiased quantum Monte Carlo simulations, we calculate the temperature evolution of the dynamical spin structure factor, the magnetic susceptibility, and the nuclear magnetic resonance (NMR) relaxation rate while changing the strength of disorder systematically. In the dynamical spin structure factor, we find that the two types of disorder seriously affect the low-energy peak originating dominantly from the flux excitations, rather than the high-energy continuum from the Majorana excitations, in a different way: The bond randomness softens the peak to the lower energy with broadening, which suggests the closing of the spin gap, whereas the site dilution smears the peak and in addition develops the other sharp peaks inside the spin gap including the zero energy. We show that the zero-energy spin excitations, which originate from the Majorana zero modes induced around the site vacancies, survive up to the temperature comparable to the energy scale of the Kitaev interaction. We also find that the two types of disorder affect the low-temperature behavior of the magnetic susceptibility and the NMR relaxation rate in a different way. For the bond randomness, the low-temperature susceptibility does not show any qualitative change against the weak disorder but it changes to divergent behavior while increasing the strength of disorder. We find that this crossover corresponds to the softening of the low-energy peak in the dynamical structure factor. Similar distinct behaviors for the weak and strong disorders are also observed in the NMR relaxation rate; an exponential decay changes into a power-law decay. In contrast, for the site dilution, we find no such crossover; divergent behavior in the susceptibility and a power-law decay in the NMR relaxation rate immediately appear with the introduction of the site dilution, which is also attributed to the emergence of the Majorana zero modes. We discuss the relevance of our results to experiments for the Kitaev candidate materials with disorders. The peculiar magnetic responses found by the present systematic analysis would be helpful to not only identify the dominant type of disorder in real materials but also examine the experimental realization of the Kitaev spin liquid by introducing disorder.
机译:我们研究了两种类型的疾病,粘合随机性和位点稀释的影响,对蜂窝晶格的Kitaev模型中的自旋动力学。该模型的地位是规范量子旋转液,其具有旋转成分化分为两种类型的Quasiply,流逝的Majorana码米子和局部通量,其旋转动力学提供了良好的缩小化探针。使用无偏心的量子蒙特卡罗模拟,我们计算动态自旋结构因子,磁化率和核磁共振(NMR)松弛率的温度演变,同时系统地改变病症的强度。在动态自旋结构因素中,我们发现这两种类型的疾病严重影响了源自助焊剂激发的低能量峰,而不是从马太基亚兴奋的高能连续体,不同的方式:粘合随机性软化具有较大的峰值较低,这表明旋转间隙的关闭,而部位稀释涂抹峰值并且另外,在包括零能量的旋转间隙内部发生其他锋利的峰值。我们表明,零能源旋转激发源于现场空缺围绕的Majorana Zero模式,生存到与Kitaev相互作用的能量规模相当的温度。我们还发现两种类型的疾病影响了磁化率的低温行为和以不同的方式影响了磁性易感性和NMR弛豫速率。对于粘合随机性,低温易感性并未显示出对弱紊乱的任何定性变化,但它变化到不同行为,同时增加了紊乱的强度。我们发现该交叉对应于动态结构因子中的低能量峰值软化。在NMR弛豫速率下也观察到弱和强疾病的类似明显行为;指数衰减变为幂律衰减。相比之下,对于场地稀释,我们没有发现这种交叉;随着网站稀释的推出,易感性和动力法在NMR弛豫率中衰减的发散行为立即出现,这也归因于Majorana零模式的出现。我们讨论了我们对Kitaev候选材料的实验与疾病的实验的相关性。目前系统分析发现的特殊磁反应将有助于不仅识别真实材料中的主要类型的疾病,而且还通过引入疾病来检查Kitaev旋转液的实验性实现。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2021年第3期|035116.1-035116.17|共17页
  • 作者

    Joji Nasu; Yukitoshi Motome;

  • 作者单位

    Department of Physics Yokohama National University Hodogaya Yokohama 240-8501 Japan PRESTO Japan Science and Technology Agency Honcho Kawaguchi Saitama 332-0012 Japan;

    Department of Applied Physics University of Tokyo Bunkyo Tokyo 113-8656 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号