...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Nonequilibrium phonon tuning and mapping in few-layer graphene with infrared nanoscopy
【24h】

Nonequilibrium phonon tuning and mapping in few-layer graphene with infrared nanoscopy

机译:用红外纳米透视的几层石墨烯调谐和映射。

获取原文
获取原文并翻译 | 示例
           

摘要

Electron-phonon interactions are fundamentally important physical processes responsible for many key discoveries in condensed matter physics and material sciences. Herein, by exploiting the scattering-type scanning near-field optical microscope (s-SNOM) excited with a femtosecond infrared (IR) laser, we explored the strong coupling between IR phonons in few-layer graphene (FLG) with ultrahot electrons, which are heated up by the intense laser field enhanced by the s-SNOM tip. More specifically, we found that the intensity of the phonon resonance can be tuned systematically by varying the laser power that controls the electron temperature. Furthermore, the high spatial resolution of s-SNOM allows us to map the local phonon characteristics at sharp boundaries and nanostructures. Our findings offer insights into the intriguing physics behind the electron-phonon interactions in nonequilibrium conditions and open a pathway for manipulating phonons with optical means.
机译:电子 - 声子相互作用是基本上重要的物理过程,负责炼细物理和物质科学中的许多关键发现。 这里,通过利用用飞秒红外(IR)激光激发激发的散射型扫描近场光学显微镜(S-SNOM),我们在具有超声电子的几层石墨烯(FLG)中探讨了IR声子之间的强耦合, 由S-SNOM尖端增强的强烈激光场加热。 更具体地,我们发现通过改变控制电子温度的激光功率,可以系统地调谐声子谐振的强度。 此外,S-SNOM的高空间分辨率允许我们在尖端和纳米结构处映射局部声子特征。 我们的调查结果为非纤维条件下的电子源主相互作用背后的有趣物理提供了深入了解,并打开用于用光学手段操纵声子的途径。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2021年第20期|L201407.1-L201407.6|共6页
  • 作者单位

    Department of Physics and Astronomy Iowa State University Ames Iowa 50011 USA Ames Laboratory U. S. Department of Energy Iowa Stale University Ames Iowa 5001 1 USA National laboratory of Solid-Stale Microstructures School of Electronic Science and Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China;

    Department of Physics and Astronomy Iowa State University Ames Iowa 50011 USA Ames Laboratory U. S. Department of Energy Iowa Stale University Ames Iowa 5001 1 USA;

    Department of Physics and Astronomy Iowa State University Ames Iowa 50011 USA Ames Laboratory U. S. Department of Energy Iowa Stale University Ames Iowa 5001 1 USA;

    Department of Physics and Astronomy Iowa State University Ames Iowa 50011 USA Ames Laboratory U. S. Department of Energy Iowa Stale University Ames Iowa 5001 1 USA;

    National laboratory of Solid-Stale Microstructures School of Electronic Science and Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China;

    Department of Physics and Astronomy Iowa State University Ames Iowa 50011 USA Ames Laboratory U. S. Department of Energy Iowa Stale University Ames Iowa 5001 1 USA;

    National laboratory of Solid-Stale Microstructures School of Electronic Science and Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China;

    Department of Physics and Astronomy Iowa State University Ames Iowa 50011 USA Ames Laboratory U. S. Department of Energy Iowa Stale University Ames Iowa 5001 1 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号