...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions
【24h】

Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions

机译:石墨烯纳米中量子点的电子传输:朝向内置间隙可调金属 - 半导体 - 金属异质结

获取原文
获取原文并翻译 | 示例
           

摘要

The success of all-graphene electronics is severely hindered by the challenging realization and subsequent integration of semiconducting channels and metallic contacts. Here, we comprehensively investigate the electronic transport across width-modulated heterojunctions consisting of a graphene quantum dot of varying lengths and widths embedded in a pair of armchair-edged metallic nanoribbons, of the kind recently fabricated via on-surface synthesis. We show that the presence of the quantum dot enables the opening of a width-dependent transport gap, thereby yielding built-in one-dimensional metal-semiconductor-metal junctions. Furthermore, we find that, in the vicinity of the band edges, the conductance is subject to a smooth transition from an antiresonant to a resonant transport regime upon increasing the channel length. These results are rationalized in terms of a competition between quantum-confinement effects and quantum dot-to-lead coupling. Overall, our work establishes graphene quantum dot nanoarchitectures as appealing platforms to seamlessly integrate gap-tunable semiconducting channels and metallic contacts into an individual nanoribbon, hence realizing self-contained carbon-based electronic devices.
机译:通过挑战性的实现和随后的半导体通道和金属接触的集成,所有石墨烯电子器件的成功受到严重阻碍。在这里,我们全面地研究了由嵌入在一对扶手椅边缘的金属纳米中嵌入的变化长度和宽度的石墨烯量子点组成的宽度调制杂交障碍的电子传输。我们表明量子点的存在使得能够打开宽度依赖的运输间隙,从而产生内置一维金属半导体 - 金属结。此外,我们发现,在带边的附近,在增加沟道长度时,电导通过从反谐振到谐振传输方案的平滑过渡。这些结果在量子限制效应和量子点到引线耦合之间的竞争方面是合理化的。总的来说,我们的工作建立了石墨烯量子点纳米建筑,作为吸引力平台,以便将间隙可调半导体通道和金属触点无缝地集成到单独的纳米中,因此实现了自包含的碳基电子器件。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第20期|201406.1-201406.5|共5页
  • 作者单位

    Institute of Physics Ecole Polytechnique Federate de Lausanne (EPFL) 1015 Lausanne Switzerland National Centre for Computational Design and Discovery of Novel Materials (MARVEL) Ecole Polytechnique Federate de Lausanne (EPFL) 1015 Lausanne Switzerland;

    Institute of Physics Ecole Polytechnique Federate de Lausanne (EPFL) 1015 Lausanne Switzerland National Centre for Computational Design and Discovery of Novel Materials (MARVEL) Ecole Polytechnique Federate de Lausanne (EPFL) 1015 Lausanne Switzerland;

    Institute of Physics Ecole Polytechnique Federate de Lausanne (EPFL) 1015 Lausanne Switzerland National Centre for Computational Design and Discovery of Novel Materials (MARVEL) Ecole Polytechnique Federate de Lausanne (EPFL) 1015 Lausanne Switzerland School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts 02138 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号