...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Magnetic field dependence of low-energy magnons, anisotropic heat conduction, and spontaneous relaxation of magnetic domains in the cubic helimagnet ZnCr_2Se_4
【24h】

Magnetic field dependence of low-energy magnons, anisotropic heat conduction, and spontaneous relaxation of magnetic domains in the cubic helimagnet ZnCr_2Se_4

机译:低能量琼精铜管,各向异性导热的磁场依赖性,立方Helimagnet ZnCr_2se_4中的磁畴的自发松弛

获取原文
获取原文并翻译 | 示例
           

摘要

Anisotropic low-temperature properties of the cubic spinel helimagnet ZnCr_2Se_4 in the single-domain spin-spiral state are investigated by a combination of neutron scattering, thermal conductivity, ultrasound velocity, and dilatometry measurements. In an applied magnetic field, neutron spectroscopy shows a complex and nonmonotonic evolution of the spin-wave spectrum across the quantum-critical point that separates the spin-spiral phase from the field-polarized ferromagnetic phase at high fields. A tiny spin gap of the pseudo-Goldstone magnon mode, observed at wave vectors that are structurally equivalent but orthogonal to the propagation vector of the spin helix, vanishes at this quantum critical point, restoring the cubic symmetry in the magnetic subsystem. The anisotropy imposed by the spin helix has only a minor influence on the lattice structure and sound velocity but has a much stronger effect on the heat conductivities measured parallel and perpendicular to the magnetic propagation vector. The thermal transport is anisotropic at T approx< 2 K, highly sensitive to an external magnetic field, and likely results directly from magnonic heat conduction. We also report long-time thermal relaxation phenomena, revealed by capacitive dilatometry, which are due to magnetic domain motion related to the destruction of the single-domain magnetic state, initially stabilized in the sample by the application and removal of magnetic field. Our results can be generalized to a broad class of helimagnetic materials in which a discrete lattice symmetry is spontaneously broken by the magnetic order.
机译:通过中子散射,导热率,超声速度和稀释测定测量的组合研究了单域旋转螺旋状态的立方尖晶石Helimagnet ZnCr_2Se_4的各向异性低温性能。在施加的磁场中,中子谱意识到旋转波光谱的复合物和非单调演化,其跨越量临界点,其将旋转螺旋相与高领域的场偏振的铁磁相分离。在结构上等同的波矢量下观察到伪金石氧化锰模式的微小旋转间隙,但与旋转螺旋的传播载体正交,在该量子临界点消失,恢复磁性子系统中的立方对称。旋转螺旋施加的各向异性仅对晶格结构和声速产生微小的影响,但对平行测量和垂直于磁传播载体的导热率具有更强的影响。热传输在T的Taki各向同性,对外部磁场高度敏感,并且可能直接导致延长热传导。我们还报告了长时间的热弛豫现象,通过电容膨胀测量揭示,这是由于磁畴运动与单个域磁状态有关的磁畴运动,最初通过应用和移除磁场在样品中稳定。我们的结果可以广泛地推广到广泛的直接磁性对称的广泛的先天性材料中,其中磁场是自发地破坏的离散晶格对称性。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第18期|184431.1-184431.14|共14页
  • 作者单位

    Institut fuer Festkoerper und Materialphysik Technische Universitaet Dresden 01069 Dresden Germany Wuerzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter - ct.qmat Technische Universitaet Dresden 01069 Dresden Germany;

    Institut fuer Festkoerper und Materialphysik Technische Universitaet Dresden 01069 Dresden Germany;

    Institut fuer Festkoerper und Materialphysik Technische Universitaet Dresden 01069 Dresden Germany;

    Department of Physics University of Miami Coral Gables Florida 33124 USA;

    Department of Physics University of Miami Coral Gables Florida 33124 USA;

    Department of Physics University of Miami Coral Gables Florida 33124 USA Department of Physics St. Mary's College of Maryland St. Mary's City MD 20686 USA;

    Institut fuer Festkoerper und Materialphysik Technische Universitaet Dresden 01069 Dresden Germany Wuerzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter - ct.qmat Technische Universitaet Dresden 01069 Dresden Germany;

    Hochfeld-Magnetlabor Dresden (HLD-EMFL) Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany;

    Hochfeld-Magnetlabor Dresden (HLD-EMFL) Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany;

    ISIS Facility STFC Rutherford Appleton Laboratory Didcot Oxfordshire OX11-0QX United Kingdom Department of Physics Royal Holloway University of London Egham TW20-0EX United Kingdom;

    Institut Laue-Langevin 71 Avenue des Martyrs CS 20156 38042 Grenoble Cedex 9 France;

    Experimental Physics Ⅴ Center for Electronic Correlations and Magnetism Institute of Physics University of Augsburg 86135 Augsburg Germany Institute of Applied Physics Chisinau MD-2028 Republic of Moldova;

    Institute of Applied Physics Chisinau MD-2028 Republic of Moldova;

    Experimental Physics Ⅴ Center for Electronic Correlations and Magnetism Institute of Physics University of Augsburg 86135 Augsburg Germany;

    Department of Physics University of Miami Coral Gables Florida 33124 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号