首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Mn_(1/4)NbS_2: Magnetic and magnetotransport properties at ambient pressure and ferro- to antiferromagnetic transition under pressure
【24h】

Mn_(1/4)NbS_2: Magnetic and magnetotransport properties at ambient pressure and ferro- to antiferromagnetic transition under pressure

机译:MN_(1/4)NBS_2:在环境压力下的磁性和磁传输性质和磁力传递在压力下的铁磁性过渡

获取原文
获取原文并翻译 | 示例
           

摘要

Transition-metal dichalcogenides (TMDCs) stand out with their high chemical stability and the possibility to incorporate a wide range of atoms and molecules between the layers. The behavior of conduction electrons in such 3d-metal-inserted materials is closely related to their magnetic properties and can be sensitively controlled by external magnetic fields. Here, we study the magnetotransport properties of Mn-inserted NbS_2, Mn_(1/4)NbS_2. demonstrating a complex behavior of the magnetoresistance and of the ordinary and anomalous Hall resistivity. Application of high pressure as tuning parameter leads to the drastic changes of the magnetotransport properties of Mn_(1/4)NbS_2 exhibiting large negative magnetoresistance up to -65% at 7.1 GPa. First-principles electronic structure calculations indicate a pressure-induced transition from a ferromagnetic to antiferromagnetic state. Theoretical calculations accounting for the finite temperature magnetic properties suggest a field-induced metamagnetic ferromagnetic-antiferromagnetic transition as an origin of the large negative magnetoresistance. These results inspire the development of materials for spintronic applications based on 3d-element-inserted TMDCs with a well controllable metamagnetic transition.
机译:过渡金属二硫代甲基化物(TMDC)以高化学稳定性脱颖而出,并且可以在层之间掺入各种原子和分子的可能性。这种3D金属插入材料中的传导电子的行为与其磁性密切相关,并且可以通过外部磁场敏感地控制。在这里,我们研究了Mn插入NBS_2,MN_(1/4)NBS_2的MagnetRansport属性。展示磁阻和普通和异常霍尔电阻率的复杂行为。高压作为调谐参数的应用导致MN_(1/4)NBS_2的磁传输性质的急剧变化,其在7.1GPa下显示出大于-65%的大负磁阻。第一原理电子结构计算表明从铁磁对反铁磁状态的压力引起的过渡。有限温度磁性特性的理论计算表明,作为大负磁阻的起源,现场诱导的元磁性铁磁性 - 反铁磁转变。这些结果基于3D元素插入的TMDCS激发了用于基于3D元素插入的TMDC的材料的开发,具有良好的可控性能转变。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第17期|174423.1-174423.13|共13页
  • 作者单位

    Department Chemie/ Physikalische Chemie Ludwig-Maximilians-Universitaet Muenchen Butenandstr. 5-13 81377 Muenchen Germany;

    Department Chemie/ Physikalische Chemie Ludwig-Maximilians-Universitaet Muenchen Butenandstr. 5-13 81377 Muenchen Germany;

    Department Chemie/ Physikalische Chemie Ludwig-Maximilians-Universitaet Muenchen Butenandstr. 5-13 81377 Muenchen Germany;

    Max Planck Institute for Chemical Physics of Solids Noethnitzer Str. 40 01187 Dresden Germany Shubnikov Institute of Crystallography Russian Academy of Sciences Moscow 119333 Russia;

    Max Planck Institute for Chemical Physics of Solids Noethnitzer Str. 40 01187 Dresden Germany;

    Max Planck Institute for Chemical Physics of Solids Noethnitzer Str. 40 01187 Dresden Germany;

    Max Planck Institute for Chemical Physics of Solids Noethnitzer Str. 40 01187 Dresden Germany;

    Inst. fuer Anorgan. Chemie Christian-Albrechts-Universitaet Kiel Olshausenstr. 40 24098 Kiel Germany;

    Inst. fuer Anorgan. Chemie Christian-Albrechts-Universitaet Kiel Olshausenstr. 40 24098 Kiel Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号