首页> 外文期刊>Physical review >G1-G2 scheme: Dramatic acceleration of nonequilibrium Green functions simulations within the Hartree-Fock generalized Kadanoff-Baym ansatz
【24h】

G1-G2 scheme: Dramatic acceleration of nonequilibrium Green functions simulations within the Hartree-Fock generalized Kadanoff-Baym ansatz

机译:G1-G2方案:在Hartree-Fock广义Kadanoff-Baym Ansatz中戏剧性加速非QuiLibrium绿色功能模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The time evolution in quantum many-body systems after external excitations is attracting high interest in many fields, including dense plasmas, correlated solids, laser-excited materials, or fermionic and bosonic atoms in optical lattices. The theoretical modeling of these processes is challenging, and the only rigorous quantum-dynamics approach that can treat correlated fermions in two and three dimensions is nonequilibrium Green functions (NEGF). However, NEGF simulations are computationally expensive due to their T~3 scaling with the simulation duration T. Recently, T~2 scaling was achieved with the generalized Kadanoff-Baym ansatz (GKBA), for the second-order Born (SOA) self energy, which has substantially extended the scope of NEGF simulations. In a recent Letter [Schlunzen et al., Phys. Rev. Lett. 124, 076601 (2020)J. we demonstrated that GKBA-NEGF simulations can be efficiently mapped onto coupled time-local equations for the single-particle and two-particle Green functions on the time diagonal, hence the method has been called the G1-G2 scheme. This allows one to perform the same simulations with order T~1 scaling, both for SOA and GW self energies giving rise to a dramatic speedup. Here we present more details on the G1-G2 scheme, including derivations of the basic equations including results for a general basis, for Hubbard systems, and for jellium. Also, we demonstrate how to incorporate initial correlations into the G1-G2 scheme. Further, the derivations are extended to a broader class of self energies, including the T matrix in the particle-particle and particle-hole channels and the dynamically-screened-ladder approximation. Finally, we demonstrate that, for all self energies, the CPU-time scaling of the G1-G2 scheme with the basis dimension N_b can be improved compared to our first report: The overhead compared to the original GKBA is not more than an additional factor N_b, even for Hubbard systems.
机译:外部激发后量子多体系的时间进化吸引了许多领域的高兴趣,包括致密的等离子体,相关固体,激光激发材料或光学格子中的Fermionic和旋杆原子。这些过程的理论建模是具有挑战性的,并且唯一可以在两种和三维中处理相关的费米的唯一严格的量子动态方法是非核状绿色功能(NegF)。然而,由于它们的仿真持续时间T缩放,NegF模拟是计算昂贵的。最近,通过广义的Kadanoff-Baym Ansatz(GKBA)来实现T〜2缩放,用于二阶(SOA)自我能量,这基本上延长了Negf模拟的范围。在最近的一封信中[Schlunzen等,phy。 rev. lett。 124,076601(2020)j。我们证明,在时间对角线上,可以有效地映射到单粒子和双粒子函数的耦合时间局域函数的GKBA-NegF模拟,因此该方法已被称为G1-G2方案。这允许人们使用订单T〜1缩放来执行相同的模拟,用于SOA和GW自体能量产生戏剧性加速。在这里,我们提供了关于G1-G2方案的更多细节,包括基本方程的推导,包括一般基础的结果,包括船舶系统,以及换羽。此外,我们演示了如何将初始相关性纳入G1-G2方案。此外,衍生扩展到更广泛的自能量,包括粒子粒子和粒子孔通道中的T矩阵和动态屏蔽梯形近似。最后,我们证明,对于所有自我能量,与我们的第一个报告相比,与基础维度N_B的G1-G2方案的CPU - 时间缩放可以提高:与原始GKBA相比的开销不超过另一个因素N_B,即使是哈伯德系统。

著录项

  • 来源
    《Physical review》 |2020年第24期|245101.1-245101.27|共27页
  • 作者单位

    Institut fuer Theoretische Physik und Astrophysik Christian-Albrechts-Universitaet zu Kiel D-24098 Kiel Germany;

    Institut fuer Theoretische Physik und Astrophysik Christian-Albrechts-Universitaet zu Kiel D-24098 Kiel Germany;

    Institut fuer Theoretische Physik und Astrophysik Christian-Albrechts-Universitaet zu Kiel D-24098 Kiel Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号