...
首页> 外文期刊>Physical review >Highly dispersive magnons with spin-gap-like features in the frustrated ferromagnetic S =1/2 chain compound Ca_2Y_2Cu_sO_(10) detected by inelastic neutron scattering
【24h】

Highly dispersive magnons with spin-gap-like features in the frustrated ferromagnetic S =1/2 chain compound Ca_2Y_2Cu_sO_(10) detected by inelastic neutron scattering

机译:高度分散的氧化铜,具有沉默的间隙样特征,其在由无弹性中子散射检测的令人沮丧的铁磁性S = 1/2链化合物CA_2Y_2CU_SO_(10)中

获取原文
获取原文并翻译 | 示例
           

摘要

We report inelastic neutron scattering experiments in Ca2Y2Cu5O10 and map out the full one-magnon dispersion which extends up to a record value of 53 meV for frustrated ferromagnetic (FM) edge-sharing CuO2 chain (FFESC) cuprates. A homogeneous spin-1/2 chain model with a FM nearest-neighbor (NN), an antiferromagnetic (AFM) next-nearest-neighbor (NNN) inchain, and two diagonal AFM interchain couplings (ICs) analyzed within linear spin-wave theory (LSWT) reproduces well the observed strong dispersion along the chains and a weak one perpendicularly. The ratio alpha = vertical bar J(a2)/J(a1)vertical bar fall of the FM NN and the AFM NNN couplings is found as similar to 0.23, close to the critical point alpha(c) = 1/4 which separates ferromagnetically and antiferromagnetically correlated spiral magnetic ground states in single chains, whereas alpha(c) 0.25 for coupled chains is considerably upshifted even for relatively weak IC. Although the measured dispersion can be described by homogeneous LSWT, the scattering intensity appears to be considerably reduced at similar to 11.5 and similar to 28 meV. The gaplike feature at 11.5 meV is attributed to magnon-phonon coupling whereas based on density matrix renormalization group simulations of the dynamical structure factor the gap at 28 meV is considered to stem partly from quantum effects due to the AFM IC. Another contribution to that gap is ascribed to the intrinsic superstructure from the distorting incommensurate pattern of CaY cationic chains adjacent to the CuO2 ones. It gives rise to nonequivalent CuO4 units and Cu-O-Cu bond angles Phi and a resulting distribution of all exchange integrals. The J's fitted by homogeneous LSWT are regarded as average values. The record value of the FM NN integral J(1) = 24 meV among FFESC cuprates can be explained by a nonuniversal Phi(not equal 90 degrees) and Cu-O bond length dependent anisotropic mean direct FM Cu-O exchange (K) over bar (pd) similar to 120 meV, similar to a value of 105 meV for Li2CuO2, in accord with larger values for La2CuO4 and CuGeO3 (similar to 110 meV) reported by Braden et al. [Phys. Rev. B 54, 1105 (1996)] phenomenologically. Enhanced K-pd values are also needed to compensate a significant AFM J(dd) = 6 meV from the dd channel, generic for FFESC cuprates but ignored so far.
机译:我们在CA2Y2CU5O10中报告了内部中子散射实验,并将全氧化镁分散体映射到令人沮丧的铁磁性(FM)边缘共享CUO2链(FFESC)铜酸杯的53meV的记录值。具有FM最近邻(NN)的均匀旋转-1 / 2链模型,反铁磁性(AFM)下一个最近邻(NNN)一英寸,以及在线性旋转波理论内分析的两个对角线AFM InterChain联轴器(ICS) (LSWT)良好地再现沿链条的强烈分散,垂直于弱。 FM NN和AFM NNN联轴器的比率alpha =垂直杆j(a2)/ j(a1)垂直条落杆下降与0.23相似,接近临界点α(c)= 1/4,其将铁磁分离在单链中和反铁磁性相关的螺旋磁场状态,而偶联链的α(c)> 0.25即使对于相对较弱的IC也有显着升高。尽管可以通过均匀的LSWT描述测量的分散,但是散射强度似乎显着降低到11.5和类似于28meV。 11.5 meV的Gaplipe特征归因于Magnon-Phonon耦合,而基于密度矩阵重新定位组的动态结构因子模拟28MeV的间隙被认为是由于AFM IC而部分地从量子效应部分地茎。这种间隙的另一个贡献归因于与CuO 2邻近CuO 2阳离子链的扭曲中的内在结构。它引起非相机的CUO4单元和Cu-O-Cu键角Phi和所有交换积分的产生分布。由均匀LSWT拟合的J被视为平均值。 FFESC铜酸铜中FM NN积分J(1)= 24MeV的记录值可以通过非凡的PHI(不等于90度)和CU-O键长度依赖性各向异性平均直接FM CU-O交换(K)来解释与120 meV类似的棒(Pd),类似于Li2Cuo2的105meV的值,符合Braden等人报告的La2Cuo4和Cugeo3(类似于110 MeV)的较大值。 [物理。 Rev. B 54,1105(1996)]现象学。还需要增强的K-PD值来补偿来自DD通道的重要AFM J(DD)> = 6 MeV,为FFEC铜替代铜铜铜,但到目前为止忽略。

著录项

  • 来源
    《Physical review》 |2019年第10期|104415.1-104415.19|共19页
  • 作者单位

    Oak Ridge Natl Lab Neutron Scattering Div POB 2009 Oak Ridge TN 37831 USA;

    Oak Ridge Natl Lab Neutron Scattering Div POB 2009 Oak Ridge TN 37831 USA|Shanghai Jiao Tong Univ Dept Phys & Astron Shanghai 200240 Peoples R China;

    Oak Ridge Natl Lab Neutron Scattering Div POB 2009 Oak Ridge TN 37831 USA;

    Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki 3058562 Japan;

    Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki 3058562 Japan;

    Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki 3058562 Japan;

    IFW Dresden Inst Theoret Solid State Phys Helmholtzstr 20 D-01069 Dresden Germany;

    IFW Dresden Inst Theoret Solid State Phys Helmholtzstr 20 D-01069 Dresden Germany;

    IFW Dresden Inst Theoret Solid State Phys Helmholtzstr 20 D-01069 Dresden Germany;

    Max Planck Inst Chem Phys Nothnitzer Str 40 D-01187 Dresden Germany;

    Tech Univ Dresden Dept Phys Inst Theoret Phys Zellescher Weg 17 D-1062 Dresden Germany;

    NASU Inst Problems Mat Sci Krzhizhanovskogo 3 UA-03180 Kiev Ukraine|DIPC Paseo Manuel de Lardizabal 4 San Sebastian 20018 Basque Country Spain;

    IFW Dresden Inst Theoret Solid State Phys Helmholtzstr 20 D-01069 Dresden Germany|Tech Univ Dresden Dept Phys Inst Theoret Phys Mommsenstr D-01069 Dresden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号