...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Fokker-Planck equation for lattice vibration: Stochastic dynamics and thermal conductivity
【24h】

Fokker-Planck equation for lattice vibration: Stochastic dynamics and thermal conductivity

机译:FOKKER-PLANCK格子振动方程:随机动力学和导热系数

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a Fokker-Planck equation (FPE) theory to describe stochastic fluctuation and relaxation processes of lattice vibration at a wide range of conditions, including those beyond the phonon gas limit. Using the time-dependent, multiple state-variable probability function of a vibration FPE, we first derive time-correlation functions of lattice heat currents in terms of correlation functions among multiple vibrational modes, and subsequently predict the lattice thermal conductivity based on the Green-Kubo formalism. When the quasiparticle kinetic transport theories are valid, this vibration FPE not only predicts a lattice thermal conductivity that is identical to the one predicted by the phonon Boltzmann transport equation, but also provides additional microscopic details on the multiple-mode correlation functions. More importantly, when the kinetic theories become insufficient due to the breakdown of the phonon gas approximation, this FPE theory remains valid to study the correlation functions among vibrational modes in highly anharmonic lattices with significant mode-mode interactions and/or in disordered lattices with strongly localized modes. At the limit of weak mode-mode interactions, we can adopt quantum perturbation theories to derive the drift/diffusion coefficients based on the lattice anharmonicity data derived from first-principles methods. As temperature elevates to the classical regime, we can perform molecular dynamics simulations to directly compute the drift/diffusion coefficients. Because these coefficients are defined as ensemble averages at the limit of delta t - 0, we can implement massive parallel simulation algorithms to take full advantage of the paralleled high-performance computing platforms. A better understanding of the temperature-dependent drift/diffusion coefficients up to melting temperatures will provide new insights on microscopic mechanisms that govern the heat conduction through anharmonic and/or disordered lattices beyond the phonon gas model.
机译:我们提出了一种FOKKER-PLANCK方程(FPE)理论来描述在各种条件下的晶格振动的随机波动和放松过程,包括超出声子气体限制的那些。使用振动FPE的时间相关的多状态变量函数函数,我们在多种振动模式之间的相关函数方面首先推导晶格热电流的时间相关函数,随后基于绿色预测晶格导热率kubo形式主义。当Quasiparticle动态传输理论有效时,该振动FPE不仅预测了与由声子Boltzmann传输方程预测的晶格导热率相同,而且还提供关于多模式相关函数的额外的微观细节。更重要的是,当由于声位气体逼近的击穿而导致动力学理论变得不足时,该FPE理论仍然有效,以研究高度谐波格子中的振动模式中的相关功能,具有显着的模式模式相互作用和/或强烈的晶格中的无序格子本地化模式。在弱模式模式相互作用的极限下,我们可以采用量子扰动理论基于从第一原理方法导出的晶格anharmonicity数据导出漂移/扩散系数。随着温度升高到经典制度,我们可以执行分子动力学模拟,以直接计算漂移/扩散系数。因为这些系数被定义为ΔT-> 0限制的集合平均值,所以我们可以实现大规模的并行仿真算法,以充分利用并联高性能计算平台。更好地理解升温至熔化温度的漂移/扩散系数将为通过超出声子气体模型之外的无谐波和/或无序的格子控制热传导的微观机制提供新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号