...
首页> 外文期刊>Physical review >Geometric confinement governs toughness and strength in defective diamond nanowires
【24h】

Geometric confinement governs toughness and strength in defective diamond nanowires

机译:几何限制决定了缺陷金刚石纳米线的韧性和强度

获取原文
获取原文并翻译 | 示例

摘要

Using classical molecular dynamics simulations and the virial description of atomic stress, this paper reveals that effective toughness and strength in defective diamond nanowires (NWs) are governed by the geometric confinement of atoms at the critical sites of the NWs. Results suggest existence of five characteristic regimes in defective NWs under applied deformation. They include the defective regime, the surface regime, the core regime, the surface-core intersection regime, and the defect-core intersection regime. The defective regime and the surface regime soften the NW and carry the maximum angular deformation at the expense of breaking local symmetry of atomic structure. On the other hand, the intersecting regimes tend to preserve the symmetry, carry the most aggressive linear deformation, and act as the critical sites for localization of atomic stress. In the defect-core intersecting regime, the differential response of its neighboring regimes to linear and angular deformations as well as the elastic fields emanating from its critical sites impose an intricate effect comprising geometric confinement and propensity to retain local symmetry. Consequently, the highest localization of elastic energy and atomic stress takes place at the critical sites of the defect-core regime and it controls the effective toughness and strength behavior of the defective nanowires. Although size-dependent variation in strength and toughness is controlled primarily by surface softening, defect-induced alteration of strength and toughness is governed by the geometric confinement. Furthermore, an atomistic analysis reveals that the localized stress fields grow radially outward from the defective regime for defective NWs, whereas in defect-free NWs they evolve inward from the surface.
机译:使用经典的分子动力学模拟和原子应力的病毒式描述,本文揭示出缺陷金刚石纳米线(NWs)的有效韧性和强度是由原子在纳米线的关键位置处的几何限制所决定的。结果表明,在施加变形的情况下,有缺陷的NWs中存在五个特征态。它们包括缺陷状态,表面状态,核心状态,表面-核心相交状态和缺陷-核心相交状态。缺陷状态和表面状态会软化NW并承担最大的角度变形,但会破坏原子结构的局部对称性。另一方面,相交态倾向于保持对称性,进行最剧烈的线性变形,并充当原子应力局部化的关键部位。在缺陷核心相交区域中,其相邻区域对线性和角度变形的微分响应,以及从其关键部位发出的弹性场施加了复杂的效果,其中包括几何限制和保持局部对称性的倾向。因此,弹性能量和原子应力的最高局部化发生在缺陷核区的关键部位,它控制了缺陷纳米线的有效韧性和强度行为。尽管强度和韧性的尺寸相关变化主要是通过表面软化来控制的,但缺陷引起的强度和韧性的变化是由几何限制来控制的。此外,原子分析表明,对于有缺陷的NW,局部应力场从缺陷状态径向向外生长,而在无缺陷的NW中,局部应力场从表面向内演化。

著录项

  • 来源
    《Physical review 》 |2020年第1期| 014111.1-014111.12| 共12页
  • 作者单位

    Laboratory of Mechanics and Physics of Heterogeneous Materials Center for Composite Materials Department of Mechanical Engineering University of Delaware Newark Delaware 19716 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号