...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy
【24h】

Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy

机译:超导隧道光谱探测石墨烯的非平衡性质

获取原文
获取原文并翻译 | 示例
           

摘要

We report on nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy. A hexagonal boron nitride (hBN) tunnel barrier in combination with a superconducting Pb contact is used to extract the local energy distribution function of the quasiparticles in graphene samples in different transport regimes. In the cases where the energy distribution function resembles a Fermi-Dirac distribution, the local electron temperature can directly be accessed. This allows us to study the cooling mechanisms of hot electrons in graphene. In the case of long samples (device length L much larger than the electron-phonon scattering length l(e-ph)), cooling through acoustic phonons is dominant. We find a crossover from the dirty limit with a power law T-3 at low temperature to the clean limit at higher temperatures with a power law T-4 and a deformation potential of 13.3 eV. For shorter samples, where L is smaller than l(e-ph) but larger than the electron-electron scattering length l(e-e), the well-known cooling through electron out-diffusion is found. Interestingly, we find strong indications of an enhanced Lorenz number in graphene. We also find evidence of a non-Fermi-Dirac distribution function, which is a result of noninteracting quasiparticles in very short samples.
机译:我们报告了超导隧道光谱探测的石墨烯的非平衡性质。六方氮化硼(hBN)隧道势垒与超导Pb接触相结合,用于提取石墨烯样品在不同传输方式下的准粒子的局部能量分布函数。在能量分布函数类似于费米-狄拉克分布的情况下,可以直接访问局部电子温度。这使我们能够研究石墨烯中热电子的冷却机理。对于长样本(设备长度L远大于电子声子散射长度l(e-ph)),通过声子进行冷却是主要的。我们发现从较低的幂定律为T-3的脏极限到较高温度下的幂定律为T-4且变形势为13.3 eV的清洁极限的交叉点。对于较短的样品,其中L小于l(e-ph)但大于电子-电子散射长度l(e-e),发现了众所周知的通过电子向外扩散的冷却方法。有趣的是,我们发现石墨烯中Lorenz数增加的强烈迹象。我们还发现非费米-狄拉克分布函数的证据,这是非常短的样本中非相互作用的准粒子的结果。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2019年第7期|075419.1-075419.11|共11页
  • 作者单位

    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland;

    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland|Tech Univ Budapest, Dept Phys, Budafoki Ut 8, H-1111 Budapest, Hungary|Hungarian Acad Sci, Econ & Nanoelect Momentum Res Grp, Budafoki Ut 8, H-1111 Budapest, Hungary;

    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland;

    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland;

    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland;

    Univ Cambridge, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England;

    Univ Cambridge, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England;

    Univ Cambridge, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England;

    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号