...
首页> 外文期刊>Physical review >Time-retarded damping and magnetic inertia in the Landau-Lifshitz-Gilbert equation self-consistentiy coupled to electronic time-dependent nonequilibrium Green functions
【24h】

Time-retarded damping and magnetic inertia in the Landau-Lifshitz-Gilbert equation self-consistentiy coupled to electronic time-dependent nonequilibrium Green functions

机译:Landau-Lifshitz-Gilbert方程中的时间滞后阻尼和磁惯性与电子时间相关的非平衡格林函数自洽

获取原文
获取原文并翻译 | 示例
           

摘要

The conventional Landau-Lifshitz-Gilbert (LLG) equation is a widely used tool to describe the dynamics of local magnetic moments, viewed as classical vectors of fixed length, with their change assumed to take place simultaneously with the cause. Here we demonstrate that recently developed [M. D. Petrovic et al., Phys. Rev. Appl. 10, 054038 (2018)] self-consistent coupling of the LLG equation to a time-dependent quantum-mechanical description of electrons-where nonequilibrium spin density from time-dependent nonequilibrium Green function (TDNEGF) calculations is inserted within a torque term into the LLG equation while local magnetic moments evolved by the LLG equation introduce time-dependent potential in the quantum Hamiltonian of electrons-microscopically generates time-retarded damping in the LLG equation described by a memory kernel that is also spatially dependent. For sufficiently slow dynamics of local magnetic moments on the memory time scale, the kernel can be expanded into power series to extract the Gilbert damping (proportional to the first time derivative of magnetization) and magnetic inertia (proportional to the second time derivative of magnetization) terms whose parameters, however, are time-dependent in contrast to time-independent parameters used in the conventional LLG equation. We use examples of single or multiple local magnetic moments precessing in an external magnetic field, as well as field-driven motion of a magnetic domain wall (DW), to quantify the difference in their time evolution computed from the conventional LLG equation versus the TDNEGF+LLG quantum-classical hybrid approach. The faster DW motion predicted by the TDNEGF+LLG approach reveals that important quantum effects, stemming essentially from a finite amount of time that it takes for a conduction electron spin to react to the motion of classical local magnetic moments, are missing from conventional classical micromagnetics simulations. We also demonstrate a large discrepancy between the TDNEGF+LLG-computed numerically exact and, therefore, nonperturbative result for charge current pumped by a moving DW and the same quantity computed by a perturbative spin motive force formula combined with the conventional LLG equation.
机译:传统的Landau-Lifshitz-Gilbert(LLG)方程是一种广泛使用的工具,用于描述局部磁矩的动力学,将其视为固定长度的经典矢量,并假定其变化与原因同时发生。在这里,我们证明了最近开发的[M. D. Petrovic等人,《物理学报》 Rev. Appl。 10,054038(2018)]将LLG方程与电子的时间相关量子力学描述进行自洽耦合,其中将时间相关的非平衡格林函数(TDNEGF)计算得出的非平衡自旋密度插入到转矩项中。 LLG方程由LLG方程演化而来的局部磁矩在电子量子哈密顿量中引入了随时间变化的电势-微观上在由内存核描述的LLG方程中产生了时滞阻尼,该存储核也是空间相关的。为了在存储时间尺度上充分降低局部磁矩的动力学速度,可以将内核扩展为幂级数,以提取吉尔伯特阻尼(与磁化的第一时间导数成正比)和磁惯性(与磁化的第二时间导数成正比)但是,与常规LLG方程中使用的与时间无关的参数相比,其参数与时间有关的术语。我们使用外部磁场中进动的单个或多个局部磁矩以及磁畴壁(DW)的场驱动运动的示例来量化从传统LLG方程与TDNEGF计算得出的时间演化差异+ LLG量子经典混合方法。 TDNEGF + LLG方法预测的更快的DW运动揭示了重要的量子效应,而本质上是由于传导电子自旋对经典局部磁矩的运动做出反应所需要的有限时间而产生的,而传统的经典微磁体却没有了模拟。我们还证明了通过TDNEGF + LLG计算得到的精确数字之间的巨大差异,因此,对于由移动DW泵浦的电荷电流和由扰动自旋动力公式与常规LLG方程组合计算出的相同数量的电荷电流,其非扰动结果。

著录项

  • 来源
    《Physical review》 |2019年第13期|134409.1-134409.11|共11页
  • 作者单位

    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA;

    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号