...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Determining the vibrational entropy change in the giant magnetocaloric material LaFe_(11.6)Si_(1.4) by nuclear resonant inelastic x-ray scattering
【24h】

Determining the vibrational entropy change in the giant magnetocaloric material LaFe_(11.6)Si_(1.4) by nuclear resonant inelastic x-ray scattering

机译:通过核共振非弹性X射线散射确定巨型磁热材料LaFe_(11.6)Si_(1.4)的振动熵变化

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetocaloric LaFe_(13-x), Si,-based compounds belong to the outstanding materials with potential for efficient solid-state refrigeration. We have performed temperature-dependent (57)~Fe nuclear resonant inelastic x-ray scattering measurements (in a field μ_0lH of ~0.7 T) of the vibrational (phonon) density of states, VDOS, in LaFen6Si|4 across the metamagnetic isostructural first-order phase transition at Tc ~ 192 K from the low-temperature ferromagnetic (FM) to the high-temperature paramagnetic (PM) phase, in order to determine the change in thermodynamic properties of the Fe lattice at T_c. The experimental results are compared with density-functional-theory-based first-principles calculations using the fixed-spin moment approach. Our combined experimental and theoretical results reveal distinct and abrupt changes in the VDOS of the Fe sublattice across Tc, occurring within a small temperature interval of △T ≤ 12 K around T_c. This indicates that strong magnetoelastic coupling fat the atomic scale) is present up to T_c, leading to a pronounced lattice softening (phonon redshift) in the PM phase. These changes originate from the itinerant electron magnetism associated with Fe and are correlated with distinct modifications in the Fe-partial electronic density of states D(E_f) at the Fermi energy E_F. From the experimental VDOS we can infer an abrupt increase (jump) in the Fe-partial vibrational entropy △S_(vib) of +6.9 ± 2.6 J/(kg K)and in the vibrational specific heat △C_(vib), of +2.7 ± 1.6 J/(kg K)upon heating. The increase in magnitude of the vibrational entropy | △S_(vib)| = 6.9 J/(kg K) of the Fe sublattice at T_c upon heating is substantial, if compared with the magnitude of the isothermal entropy change |△5_(iso)| of 14.2 J/(kg K) in a field change AB from 0 to 1 T, as obtained from isothermal magnetization measurements on our sample and using the Maxwell relation. We demonstrate that △S_(vib) obtained by nuclear resonant inelastic x-ray scattering is a sizable quantity and contributes directly and cooperatively to the total entropy change △5_(iso) at the phase transition of LaFe_(13-x) Si_x.
机译:磁热LaFe_(13-x),Si基化合物属于杰出的材料,具有实现高效固态制冷的潜力。我们已经进行了跨亚磁同质结构的LaFen6Si | 4的状态的振动(声子)密度(VDOS)VDOS的依赖温度的(57)〜Fe核共振非弹性X射线散射测量(在〜0.7 T的μ_0lH场中)为了确定Fe晶格在T_c的热力学性质的变化,在Tc〜192 K处从低温铁磁性(FM)到高温顺磁性(PM)进行了有序的相变。使用固定自旋矩方法将实验结果与基于密度泛函理论的第一性原理计算进行了比较。我们的综合实验和理论结果表明,在T_c附近的△T≤12 K的较小温度区间内,Fe子晶格的VDOS在Tc上发生了明显且突然的变化。这表明直到T_c都存在强的磁弹性耦合脂肪(原子级),导致PM相中明显的晶格软化(声子红移)。这些变化源自与Fe相关的流动电子磁性,并且与费米能E_F处的Fe部分电子密度D(E_f)的明显变化相关。从实验VDOS可以推断出Fe部分振动熵△S_(vib)为+6.9±2.6 J /(kg K)以及振动比热△C_(vib)突然增加(跳跃)+加热时为2.7±1.6 J /(kg K)。振动熵的大小增加| △S_(振动)|如果与等温熵变|△5_(iso)|的大小相比,加热时T_c处的Fe亚晶格= 6.9 J /(kg K)很大。从0到1 T的磁场变化AB中的14.2 J /(kg K)的变化,这是通过对我们的样品进行等温磁化测量并使用麦克斯韦关系得出的。我们证明了通过核共振非弹性x射线散射获得的△S_(vib)是一个相当大的数量,并且在LaFe_(13-x)Si_x的相变处直接并协同地贡献了总熵变△5_(iso)。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第2期|024417.1-024417.14|共14页
  • 作者单位

    Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany;

    Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany;

    Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany;

    Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany;

    IFW Dresden, P.O. Box 270116, 01171 Dresden, Germany;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Materials Science, TU Darmstadt, 64287 Darmstadt, Germany;

    Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号