...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Flux-driven and geometry-controlled spin filtering for arbitrary spins in aperiodic quantum networks
【24h】

Flux-driven and geometry-controlled spin filtering for arbitrary spins in aperiodic quantum networks

机译:磁通驱动和几何控制的自旋滤波,用于非周期性量子网络中的任意自旋

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate that an aperiodic array of certain quantum networks comprising magnetic and nonmagnetic atoms can act as perfect spin filters for particles with arbitrary spin state. This can be achieved by introducing minimal quasi-one dimensionality in the basic structural units building up the array, along with an appropriate tuning of the potential of the nonmagnetic atoms, the tunnel hopping integral between the nonmagnetic atoms, and the backbone, and, in some cases, by tuning an external magnetic field. This latter result opens up the interesting possibility of designing a flux-controlled spin demultiplexer using quantum networks. The proposed networks have close resemblance with a family of recently developed photonic lattices, and the scheme for spin filtering can thus be linked, in principle, to the possibility of suppressing any one of the two states of polarization of a single photon, almost at will. We use transfer matrices and a real space renormalization group scheme to unravel the conditions under which any aperiodic arrangement of such topologically different structures will filter out any given spin projection. The filtering turns out to be engineered by an energy-independent commutation of the basic transfer matrices, which results out of a unique set of correlation between the system parameters and/or the external flux. The commutation generates absolutely continuous subbands populated by extended, Bloch-like eigenstates in the densities of states, even for such aperiodic systems, thus defying localization and creating unattenuated transport over a continuous range of energy eigenvalues. This is an example which goes well beyond the previous studies on disordered systems, where delocalization of single particle excitations could be achieved by resonance, but only for a finite set of energy eigenvalues of the system. Our results are analytically exact, and corroborated by extensive numerical calculations of the spin-polarized transmission and the density of states of such systems.
机译:我们证明某些包含磁性和非磁性原子的量子网络的非周期性阵列可以充当具有任意自旋状态的粒子的理想自旋滤波器。这可以通过在构成阵列的基本结构单元中引入最小的准一维,以及适当调整非磁性原子的电势,非磁性原子与主干之间的隧道跳跃积分以及在某些情况下,可以通过调整外部磁场来实现。后一个结果开辟了使用量子网络设计通量控制自旋解复用器的有趣可能性。拟议的网络与最近开发的光子晶格家族非常相似,因此,自旋滤波的方案原则上可以与抑制单个光子的两个偏振态中的任何一个偏振态的可能性联系在一起。 。我们使用传递矩阵和实空间重整化组方案来解开这种拓扑不同结构的任何非周期性排列将滤除任何给定自旋投影的条件。事实证明,滤波是通过基本传递矩阵的独立于能量的换向而设计的,这是由系统参数和/或外部通量之间的一组唯一的相关性导致的。换向产生绝对连续的子带,这些子带由状态密度的扩展的,类似Bloch的本征态组成,即使对于这种非周期性系统,也因此在局部的能量本征值范围内无法定位并产生未衰减的传输。这个例子远远超出了先前对无序系统的研究,在无序系统中,单粒子激发的离域可以通过共振来实现,但是仅对于系统的有限的能量本征值集。我们的结果在分析上是精确的,并且通过自旋极化传输和此类系统状态密度的大量数值计算得到了证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号