...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers
【24h】

Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers

机译:量子点半导体光放大器进行光信号放大和处理的理论

获取原文
获取原文并翻译 | 示例

摘要

This work presents a theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers (SOA's) based on the density matrix equations to treat electron-light interaction and the optical pulse propagation equations. The theory includes the linear optical response as well as the incoherent and coherent nonlinear response of the new devices with arbitrary spectral and spatial distribution of quantum dots in the active region under the multimode light. The incoherent nonlinear response was due to the incoherent spectral hole burning and the reduction in the carrier density by the stimulated emission. The coherent nonlinearity was due to the dynamic spectral hole burning caused by the population beating at the electronic states resonant to the multimode light and the carrier density pulsation caused by the carrier relaxation dynamics. Based on the theory, we numerically simulated the operation of quantum-dot SOA's, and succeeded in presenting their diverse promising features in a very systematical manner. We expect amplifiers with low power consumption, high saturation power, broad gain bandwidth, and pattern-effect-free operation under gain saturation, and also signal processing devices to realize high-speed (40 to 160 Gb/s) pattern-effect-free wavelength conversion by the cross-gain modulation with low frequency chirping and symmetric highly-efficient 1 to 2 THz wavelength conversion by the nondegenerate four-wave mixing. We point out that the nonlinear optical response due to the spectral hole burning plays a decisive role in the high-speed optical signal processing. Many of the theoretical predictions in this paper agree well with recent experimental demonstrations of device performance. This work will help not only design practical quantum-dot devices working in the photonic networks but also understand how carrier dynamics relates to the optical response of quantum dots with optical gain under current injection.
机译:这项工作提出了一种基于量子矩阵半导体光放大器(SOA's)的光信号放大和处理的理论,该理论基于用于处理电子-光相互作用的密度矩阵方程和光脉冲传播方程。该理论包括新器件的线性光学响应以及非相干和相干非线性响应,这些新器件在多模光下在有源区内具有量子点的任意光谱和空间分布。非相干非线性响应是由于非相干光谱空穴燃烧和受激发射导致载流子密度降低所致。相干的非线性是由于在多态光共振的电子态下,由于人口跳动引起的动态光谱空穴燃烧,以及由于载流子弛豫动力学引起的载流子密度脉动。基于该理论,我们对量子点SOA的操作进行了数值模拟,并成功地以非常系统的方式展示了它们的多种有前途的特征。我们希望放大器具有低功耗,高饱和功率,宽增益带宽和增益饱和下的无图案效应操作,以及信号处理设备能够实现高速(40至160 Gb / s)无图案效应通过低频chi的交叉增益调制进行波长转换,以及通过非简并四波混频实现对称的高效1至2 THz波长转换。我们指出,由于光谱孔燃烧引起的非线性光学响应在高速光信号处理中起着决定性的作用。本文中的许多理论预测与设备性能的最新实验演示非常吻合。这项工作不仅将有助于设计在光子网络中工作的实用量子点器件,而且将有助于了解载流子动力学如何与电流注入下具有光增益的量子点的光学响应相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号