首页> 外文期刊>Physical review >Optical emission and nanoparticle generation in Al plasmas using ultrashort laser pulses temporally optimized by real-time spectroscopic feedback
【24h】

Optical emission and nanoparticle generation in Al plasmas using ultrashort laser pulses temporally optimized by real-time spectroscopic feedback

机译:利用超短激光脉冲通过实时光谱反馈在时间上优化的铝等离子体中的光发射和纳米粒子生成

获取原文
获取原文并翻译 | 示例
           

摘要

With an interest in pulsed laser deposition and remote spectroscopy techniques, we explore here the potential of laser pulses temporally tailored on ultrafast time scales to control the expansion and the excitation degree of various ablation products including atomic species and nanoparticulates. Taking advantage of automated pulse-shaping techniques, an adaptive procedure based on spectroscopic feedback is applied to regulate the irradiance and enhance the optical emission of monocharged aluminum ions with respect to the neutral signal. This leads to optimized pulses usually consisting in a series of femtosecond peaks distributed on a longer picosecond sequence. The ablation features induced by the optimized pulse are compared with those determined by picosecond pulses generated by imposed second-order dispersion or by double pulse sequences with adjustable picosecond separation. This allows to analyze the influence of fast- and slow-varying envelope features on the material heating and the resulting plasma excitation degree. Using various optimal pulse forms including designed asymmetric shapes, we analyze the establishment of surface pre-excitation that enables conditions of enhanced radiation coupling. Thin films elaborated by unshaped femtosecond laser pulses and by optimized, stretched, or double pulse sequences are compared, indicating that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. A therrnodynamic scenario involving supercritical heating is proposed to explain enhanced ionization rates and lower particulates density for optimal pulses. Numerical one-dimensional hydrodynamic simulations for the excited matter support the interpretation of the experimental results in terms of relative efficiency of various relaxation paths for excited matter above or below the thermodynamic stability limits. The calculation results underline the role of the temperature and density gradients along the ablated plasma plume which lead to the spatial distinct locations of excited species. Moreover, the nanoparticles sizes are computed based on liquid layer ejection followed by a Rayleigh and Taylor instability decomposition, in good agreement with the experimental findings.
机译:对脉冲激光沉积和远程光谱技术感兴趣,我们在这里探索在超快时间尺度上临时定制的激光脉冲的潜力,以控制各种消融产品(包括原子种类和纳米粒子)的膨胀和激发程度。利用自动脉冲整形技术,基于光谱反馈的自适应过程可用于调节辐照度并增强单电荷铝离子相对于中性信号的光发射。这导致优化的脉冲通常由分布在较长的皮秒序列上的一系列飞秒峰组成。将由优化脉冲引起的消融特征与由施加的二阶色散产生的皮秒脉冲或具有可调的皮秒间隔的双脉冲序列确定的那些特征进行比较。这可以分析快和慢变化的包络线特征对材料加热和产生的等离子体激发程度的影响。使用包括设计的非对称形状在内的各种最佳脉冲形式,我们分析了表面预激励的建立,该条件可增强辐射耦合的条件。比较了未成形飞秒激光脉冲和优化,拉伸或双脉冲序列形成的薄膜,这表明纳米粒子的产生效率受到激光照射时间形状的强烈影响。提出了一种涉及超临界加热的热力学方案,以解释提高电离速率和降低最佳脉冲的微粒密度。对于激发物质的数值一维流体动力学模拟,可以根据高于或低于热力学稳定性极限的激发物质的各种弛豫路径的相对效率来支持实验结果的解释。计算结果强调了沿烧蚀的等离子体羽流产生的温度和密度梯度的作用,这导致了受激物种的空间位置不同。此外,纳米粒子的尺寸是根据液体层喷射,随后的瑞利和泰勒不稳定性分解计算得出的,与实验结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号