...
首页> 外文期刊>Physical review >Magnetic and orbital order in (RMnO_3)_n/(AMnO_3)_(2n) superlattices studied via a double-exchange model with strain
【24h】

Magnetic and orbital order in (RMnO_3)_n/(AMnO_3)_(2n) superlattices studied via a double-exchange model with strain

机译:通过带应变的双交换模型研究(RMnO_3)_n /(AMnO_3)_(2n)超晶格的磁和轨道序

获取原文
获取原文并翻译 | 示例

摘要

The two-orbital double-exchange model is employed for the study of the magnetic and orbital orders in (RMnO_3)_n/(AMnO_3)_(2n) (R: rare earths; A: alkaline-earth metal) superlattices. The A-type antiferromagnetic order is observed in a broad region of parameter space for the case of SrTiO_3 as substrate, in agreement with recent experiments and first-principles calculations using these superlattices. In addition, a C-type antiferromagnetic state is also predicted to be stabilized when using substrates like LaAlO_3 with smaller lattice constants than SrTiO_3, again in agreement with first-principles results. The physical mechanism for the stabilization of the A and C magnetic transitions is driven by the orbital splitting of the x~2 - y~2 and 3z~2 - r~2 orbitals. This splitting is induced by the Q_3 mode of Jahn-Teller distortions created by the strain induced by the substrates. In addition to the special example of (LaMnO_3)_n/(SrMnO_3)_(2n), our phase diagrams can be valuable for the case where the superlattices are prepared employing narrow bandwidth manganites. In particular, several nonhomogenous magnetic profiles are predicted to occur in narrow-bandwidth superlattices, highlighting the importance of carrying out investigations in this mostly unexplored area of research.
机译:两轨道双交换模型用于研究(RMnO_3)_n /(AMnO_3)_(2n)(R:稀土元素; A:碱土金属)超晶格中的磁和轨道序。以最近的实验和使用这些超晶格的第一性原理计算为基础,在以SrTiO_3为底物的情况下,在宽范围的参数空间中观察到了A型反铁磁顺序。另外,当使用诸如LaAlO_3之类的晶格常数小于SrTiO_3的衬底时,C型反铁磁态也被认为是稳定的,这也与第一原理结果一致。用于稳定A和C磁跃迁的物理机制是由x〜2-y〜2和3z〜2-r〜2轨道的轨道分裂驱动的。这种分裂是由基板引起的应变所产生的Jahn-Teller变形的Q_3模式引起的。除了(LaMnO_3)_n /(SrMnO_3)_(2n)的特殊示例外,我们的相图对于使用窄带宽锰铁制备超晶格的情况也很有价值。特别是,在窄带宽超晶格中会出现几种非均匀的磁分布,这突出表明了在这一尚未开发的主要研究领域进行研究的重要性。

著录项

  • 来源
    《Physical review 》 |2012年第20期| 205121.1-205121.10| 共10页
  • 作者单位

    Department ofPhysics, Southeast University, Nanjing 211189, China,Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA,Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;

    Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of technology, Yancheng 224051, China,Computational Condensed Matter Physics Laboratory, RIKEN ASI, Wako, Saitama 351-0198, Japan,CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan;

    Computational Condensed Matter Physics Laboratory, RIKEN ASI, Wako, Saitama 351-0198, Japan,CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan,Computational Materials Science Research Team, RIKEN AICS, Kobe, Hyogo 650-0047, Japan;

    National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China,International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China;

    Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA,Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    metal-insulator transitions and other electronic transitions; superlattices; manganites;

    机译:金属-绝缘体过渡和其他电子过渡;超晶格锰矿;

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号