首页> 外文期刊>Physical review >Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability
【24h】

Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability

机译:密度泛函理论从二元氧化物预测三元氧化物形成能的准确性及其对相稳定性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The evaluation of reaction energies between solids using density functional theory (DFT) is of practical importance in many technological fields and paramount in the study of the phase stability of known and predicted compounds. In this work, we present a comparison between reaction energies provided by experiments and computed by DFT in the generalized gradient approximation (GGA), using a Hubbard U parameter for some transition metal elements (GGA + U). We use a data set of 135 reactions involving the formation of ternary oxides from binary oxides in a broad range of chemistries and crystal structures. We find that the computational errors can be modeled by a normal distribution with a mean close to zero and a standard deviation of 24 meV/atom. The significantly smaller error compared to the more commonly reported errors in the formation energies from the elements is related to the larger cancellation of errors in energies when reactions involve chemically similar compounds. This result is of importance for phase diagram computations for which the relevant reaction energies are often not from the elements but from chemically close phases (e.g., ternary oxides versus binary oxides). In addition, we discuss the distribution of computational errors among chemistries and show that the use of a Hubbard U parameter is critical to the accuracy of reaction energies involving transition metals even when no major change in formal oxidation state is occurring.
机译:使用密度泛函理论(DFT)评估固体之间的反应能在许多技术领域中具有重要的实践意义,对于研究已知化合物和预测化合物的相稳定性至关重要。在这项工作中,我们使用一些过渡金属元素(GGA + U)的Hubbard U参数,对实验提供的反应能量与DFT在广义梯度近似(GGA)中计算的能量之间进行了比较。我们使用135个反应的数据集,涉及从广泛的化学和晶体结构中的二元氧化物形成三元氧化物。我们发现,可以通过均值接近零且标准偏差为24 meV / atom的正态分布来建模计算误差。与元素中形成能量的更普遍报道的误差相比,误差明显较小,这与当反应涉及化学上相似的化合物时能量的误差消除更大有关。该结果对于相图计算很重要,对于相图计算而言,相关的反应能量通常不是来自元素,而是来自化学上接近的相(例如,三元氧化物与二元氧化物)。此外,我们讨论了化学方法之间的计算误差分布,并表明,即使在正式氧化态未发生重大变化的情况下,使用Hubbard U参数对于涉及过渡金属的反应能的准确性也至关重要。

著录项

  • 来源
    《Physical review》 |2012年第15期|p.155208.1-155208.18|共18页
  • 作者单位

    Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue,02139 Cambridge, Massachusetts, USA,Institut de la Matiere Condensee et des Nanosciences (IMCN)-Nanoscopic Physics (NAPS), Universite Catholique de Louvain.;

    Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue,02139 Cambridge, Massachusetts, USA;

    Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue,02139 Cambridge, Massachusetts, USA;

    Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue,02139 Cambridge, Massachusetts, USA;

    Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue,02139 Cambridge, Massachusetts, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    density functional theory, local density approximation, gradient and other corrections;

    机译:密度泛函理论;局部密度近似;梯度和其他校正;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号