...
首页> 外文期刊>Physical review >Quantum confinement effect in armchair graphene nanoribbons: Effect of strain on band gap modulation studied using first-principles calculations
【24h】

Quantum confinement effect in armchair graphene nanoribbons: Effect of strain on band gap modulation studied using first-principles calculations

机译:扶手椅石墨烯纳米带的量子约束效应:使用第一性原理计算研究应变对带隙调制的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The quantum confinement effect may play an important role in the gap modulation of armchair graphene nanoribbons (AGNRs) under strain. Using the phase accumulation model, we have investigated the energy-dependent phase shift φ(ε) at the Γ point of AGNRs under various strains using first-principles calculation. The calculation results show that although the energy dispersion of the phase shift is modified by strain, the phase shift near the Fermi level is close to 0.75π, indicating that strain has little effect near that energy level. We can approximate the energy-dependent phase shift by a constant, φ(ε) = 0.757π, for AGNRs under various x strains. Due to the structural similarity between AGNRs and zigzag carbon nanotubes (ZCNTs), the electronic properties of AGNRs should be similar to those of ZCNTs. The quantization condition of the wave vector of ZCNTs governed by the periodic boundary condition along the circumference direction is similar to that of AGNRs except that the phase shift is equal to zero, φ(ε) = 0. Using the zone-folding (ZF) method, we can calculate the band gap of any strained AGNR (ZCNT) from the phase shift φ = 0.75π (φ= 0) and the electronic structure of the strained graphene. The AGNR shows a zigzag behavior of the dependence of the band gap on strain which is very similar to the ZCNT. The zigzag patterns are significantly shifted by different phase shifts. The peak value of the band gap and the period of the pattern decreases as the width of the ribbon increases. For a given AGNR, the peak value and the period of the pattern increase as the strain increases. A flattening of the peaks appears at the strain where the maximum band gap occurs due to large compressive strain. All these observations can be understood easily from our ZF calculations. The agreement between our model and real local-density approximation calculations indicates that our model can provide an efficient and accurate method to estimate the band gap of AGNRs and ZCNTs under strain, and therefore can provide a better understanding of the effect of quantum confinement on the electronic properties of AGNRs.
机译:量子约束效应在应力作用下扶手椅石墨烯纳米带(AGNR)的间隙调节中可能起重要作用。使用相积模型,我们使用第一性原理计算了在各种应变下AGNRs的Γ点处能量相关的相移φ(ε)。计算结果表明,尽管应变改变了相移的能量色散,但费米能级附近的相移接近0.75π,表明应变在该能级附近影响很小。对于各种x应变下的AGNR,我们可以通过常数φ(ε)=0.757π来近似依赖于能量的相移。由于AGNR和锯齿形碳纳米管(ZCNT)之间的结构相似性,AGNR的电子特性应与ZCNT的电子特性相似。 ZCNTs沿圆周方向受边界条件约束的波矢量的量化条件与AGNRs相似,只是相移等于零(φ(ε)= 0)。使用区域折叠(ZF)方法,我们可以根据相移φ=0.75π(φ= 0)和应变石墨烯的电子结构来计算任何应变AGNR(ZCNT)的带隙。 AGNR显示出带隙对应变的依赖性的Z字形行为,这与ZCNT非常相似。锯齿形通过不同的相移而显着移动。带隙的峰值和图案的周期随着带的宽度增加而减小。对于给定的AGNR,图案的峰值和周期随着应变的增加而增加。由于大的压缩应变,在出现最大带隙的应变处出现峰的平坦化。从我们的ZF计算中可以轻松理解所有这些观察结果。我们的模型与实际局部密度近似计算之间的一致性表明,我们的模型可以提供一种有效且准确的方法来估算应变下AGNR和ZCNT的带隙,因此可以更好地理解量子约束对量子点的影响。 AGNRs的电子特性。

著录项

  • 来源
    《Physical review》 |2014年第3期|035450.1-035450.6|共6页
  • 作者单位

    Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan;

    Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan;

    Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan;

    National Center for High-Performance Computing, Hsinchu 300, Taiwan ,Department of Physics, National Chung Hsiung University, Taichung 402, Taiwan;

    Division of Natural Science, Center for General Education, Chang Gung University, Tao-Yuan 333, Taiwan;

    Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electronic transport in nanoscale materials and structures;

    机译:纳米级材料和结构中的电子传输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号