首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Room temperature lasing unraveled by a strong resonance between gain and parasitic absorption in uniaxially strained germanium
【24h】

Room temperature lasing unraveled by a strong resonance between gain and parasitic absorption in uniaxially strained germanium

机译:在单轴应变锗中,增益与寄生吸收之间的强共振消除了室温激射

获取原文
获取原文并翻译 | 示例
           

摘要

A complementary metal-oxide semiconductor compatible on-chip light source is the holy grail of silicon photonics and has the potential to alleviate the key scaling issues arising due to electrical interconnects. Despite several theoretical predictions, a sustainable, room temperature laser from a group-IV material is yet to be demonstrated. In this work, we show that a particular loss mechanism, inter-valence-band absorption (IVBA), has been inadequately modeled until now and capturing its effect accurately as a function of strain is crucial to understanding light emission processes from uniaxially strained germanium (Ge). We present a detailed model of light emission in Ge that accurately models IVBA in the presence of strain and other factors such as polarization, doping, and carrier injection, thereby revising the road map toward a room temperature Ge laser. Strikingly, a special resonance between gain and loss mechanisms at 4%-5% (100) uniaxial strain is found resulting in a high net gain of more than 400 cm~(-1) at room temperature. It is shown that achieving this resonance should be the goal of experimental work rather than pursuing a direct band gap Ge.
机译:互补金属氧化物半导体兼容的片上光源是硅光子学的圣杯,具有缓解因电互连而引起的关键缩放问题的潜力。尽管有一些理论上的预测,但仍需证明一种由IV组材料制成的可持续室温激光器。在这项工作中,我们表明到目前为止,尚未对特定的损耗机制价带间吸收(IVBA)进行足够的建模,并且准确地捕捉其作为应变的函数的作用对于理解单轴应变锗的发光过程至关重要(葛)。我们介绍了Ge中发光的详细模型,该模型在存在应变和其他因素(例如偏振,掺杂和载流子注入)的情况下准确地对IVBA进行建模,从而修订了向室温Ge激光器的路线图。令人惊讶地,发现在4%-5%(100)的单轴应变下,增益和损耗机制之间存在特殊的共振,从而导致室温下的净增益超过400 cm〜(-1)。结果表明,实现这种共振应该是实验工作的目标,而不是追求直接的带隙Ge。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第15期|155127.1-155127.9|共9页
  • 作者单位

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    School of Electrical and Electronic Engineering, Nanyang Technological University. Singapore;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号