...
首页> 外文期刊>Physical review letters >Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials
【24h】

Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials

机译:激子结合能与二维材料带隙的线性关系

获取原文
获取原文并翻译 | 示例
           

摘要

The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the GW-Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.
机译:激子是光电子和光子器件性能中最关键的物理实体之一,据报道,在不同种类的材料中激子的结合能变化很大。使用GW-Bethe-Salpeter方程方法中的第一性原理计算,在这里,我们研究了两种最近发现的层状材料:phosphor和氟化石墨烯的激子性质。我们首先确认在这些系统中,大的激子结合能分别为0.85和2.03 eV。接下来,通过将这些系统与其他几种代表性的二维材料进行比较,我们发现激子束缚能与带隙之间存在惊人的线性关系,并解释了简单氢图像中线性比例定律的存在。通过使用应变石墨烯氟化物进一步证明了这种新颖的缩放定律的广泛适用性。预期这些发现将刺激在更高和更低维度上的相关研究,从而可能导致对所有维度材料中激子效应的更深刻理解。

著录项

  • 来源
    《Physical review letters》 |2015年第6期|066403.1-066403.5|共5页
  • 作者单位

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Int Ctr Quantum Design Funct Mat ICQD, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Int Ctr Quantum Design Funct Mat ICQD, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Int Ctr Quantum Design Funct Mat ICQD, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Int Ctr Quantum Design Funct Mat ICQD, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号