...
首页> 外文期刊>Physical review letters >Randomness Amplification under Minimal Fundamental Assumptions on the Devices
【24h】

Randomness Amplification under Minimal Fundamental Assumptions on the Devices

机译:设备上的最小基本假设下的随机性放大

获取原文
获取原文并翻译 | 示例

摘要

Recently, the physically realistic protocol amplifying the randomness of Santha-Vazirani sources producing cryptographically secure random bits was proposed; however, for reasons of practical relevance, the crucial question remained open regarding whether this can be accomplished under the minimal conditions necessary for the task. Namely, is it possible to achieve randomness amplification using only two no-signaling components and in a situation where the violation of a Bell inequality only guarantees that some outcomes of the device for specific inputs exhibit randomness? Here, we solve this question and present a device-independent protocol for randomness amplification of Santha-Vazirani sources using a device consisting of two nonsignaling components. We show that the protocol can amplify any such source that is not fully deterministic into a fully random source while tolerating a constant noise rate and prove the composable security of the protocol against general no-signaling adversaries. Our main innovation is the proof that even the partial randomness certified by the two-party Bell test [a single input-output pair (u*, x*) for which the conditional probability P(x*vertical bar u*) is bounded away from 1 for all no-signaling strategies that optimally violate the Bell inequality] can be used for amplification. We introduce the methodology of a partial tomographic procedure on the empirical statistics obtained in the Bell test that ensures that the outputs constitute a linear min-entropy source of randomness. As a technical novelty that may be of independent interest, we prove that the Santha-Vazirani source satisfies an exponential concentration property given by a recently discovered generalized Chernoff bound.
机译:最近,提出了一种物理现实的协议,该协议可放大产生密码安全随机位的Santha-Vazirani源的随机性。但是,出于实际意义,关键问题仍然悬而未决,即能否在任务所需的最低条件下完成这一任务。也就是说,是否可以仅使用两个无信号分量来实现随机性放大,并且在违反Bell不等式的情况下仅能保证设备针对特定输入的某些结果具有随机性?在这里,我们解决了这个问题,并提出了一个独立于设备的协议,用于使用由两个非信号分量组成的设备对Santha-Vazirani源进行随机放大。我们证明了该协议可以将任何不能完全确定的此类源放大为完全随机的源,同时容忍恒定的噪声率,并证明该协议针对一般的无信号对手具有可组合的安全性。我们的主要创新在于证明,即使通过两方贝尔测试证明的局部随机性[单个输入-输出对(u *,x *),其条件概率P(x *垂直线u *)也被限制了对于最佳违反Bell不等式的所有无信号策略,从1开始可用于放大。我们介绍了根据贝尔测试中获得的经验统计数据进行部分层析成像的方法,该方法可确保输出构成线性的最小随机熵。作为一项可能具有独立利益的技术新颖性,我们证明了Santha-Vazirani源满足最近发现的广义Chernoff界给出的指数集中特性。

著录项

  • 来源
    《Physical review letters》 |2016年第23期|230501.1-230501.5|共5页
  • 作者单位

    Univ Gdansk, Fac Math Phys & Informat, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland;

    Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA|UCL, Dept Comp Sci, London WC1E 6BT, England;

    Univ Gdansk, Inst Informat, Natl Quantum Informat Ctr, Fac Math Phys & Informat, PL-80308 Gdansk, Poland;

    Univ Gdansk, Fac Math Phys & Informat, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland;

    Gdansk Univ Technol, Natl Quantum Informat Ctr, Fac Appl Phys & Math, PL-80233 Gdansk, Poland;

    Univ Gdansk, Fac Math Phys & Informat, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland|Univ Silesia, Fac Math Phys & Chem, Math Inst, Bankowa 14, PL-40007 Katowice, Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号