...
首页> 外文期刊>Physical Review C: Nuclear Physics >Detailed measurement of the e+e- pair continuum in p+p and Au+Au collisions at √sNN=200 GeV and implications for direct photon production
【24h】

Detailed measurement of the e+e- pair continuum in p+p and Au+Au collisions at √sNN=200 GeV and implications for direct photon production

机译:√sNN= 200 GeV时p + p和Au + Au碰撞中e + e对连续体的详细测量及其对直接光子产生的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

PHENIX has measured the e+e- pair continuum in √sNN=200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e+e- yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate-mass region, between the masses of the ϕ and the J/ψ meson, the yield is consistent with expectations from correlated cc̄ production, although other mechanisms are not ruled out. In the low-mass region, below the ϕ, the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7±0.4stat±1.5syst±0.9model. At low mass (mee<0.3 GeV/c2) and high pT (1T<5 GeV/c) an enhanced e+e- pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in pT, with inverse slope T=221±19stat±19syst MeV. Hydrodynamical models with initial temperatures ranging from Tinit≃300–600 MeV at times of 0.6–0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low pT<1 GeV/c the low-mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T≃100 MeV. Theoretical models underpredict the low-mass, low-pT enhancement.
机译:PHENIX在√sNN= 200 GeV Au + Au和p + p碰撞中测量了大范围的质量矩和横向矩时的e + e对连续体。根据PHENIX测量,将e + e产量与强子酸来源的预期值进行比较。在中等质量区域,the和J /ψ介子的质量之间,尽管不排除其他机制,但产量与相关cc̄产生的期望值一致。在低质量区,低于ϕ,通过光子介子衰变的已知贡献很好地描述了p + p包含在内的质谱。相比之下,该区域的Au + Au最小偏置包含质谱显示出4.7±0.4stat±1.5syst±0.9模型的增强。在低质量(mee <0.3 GeV / c2)和高pT(1 T <5 GeV / c)下,观察到增强的e + e对产量,与虚拟直接光子的产生一致。该过量用于推断实际直接光子的产量。在中心Au + Au碰撞中,超过p + p的直接光子产量在pT中呈指数关系,反斜率T = 221±19stat±19syst MeV。碰撞后初始温度在Tinit≃300–600 MeV范围内,碰撞后0.6–0.15 fm / c的流体力学模型与Au + Au中的直接光子数据在质量上是一致的。对于低pT <1 GeV / c,低质量区域显示出进一步的显着增强,随中心度的增加而增强,其反斜率为T≃100MeV。理论模型低估了低质量,低pT的增强。

著录项

  • 来源
    《Physical Review C: Nuclear Physics》 |2010年第3期|p.1-56|共56页
  • 作者单位

    1Abilene Christian University, Abilene, Texas 79699, USA2Department of Physics, Banaras Hindu University, Varanasi 221005, India3Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA4Brookhaven National Laboratory, Upton, New York 11973-5000, USA5University of California-Riverside, Riverside, California 92521, USA6Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic7China Institute of Atomic Energy (CIAE), Beijing, People’s Republic of China8Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan9University of Colorado, Boulder, Colorado 80309, USA10Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA11Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic12Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France13Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary14ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary15Florida Institute of Technology, Melbourne, Florida 32901, USA16Florida State University, Tallahassee, Florida 32306, USA17Georgia State University, Atlanta, Georgia 30303, USA18Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan19IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, RU-142281, Russia20University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA21Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic22Iowa State University, Ames, Iowa 50011, USA23Joint Institute for Nuclear Research, RU-141980 Dubna, Moscow Region, Russia24KAERI, Cyclotron Application Laboratory, Seoul, Korea25KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan26KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences (MTA KFKI RMKI), H-1525 Budapest 114, PO Box 49, Budapest, Hungary27Korea University, Seoul, 136-701, Korea28Russian Research Center “Kurchatov Institute,” Moscow, Russia29Kyoto University, Kyoto 606-8502, Japan30Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France31Lawrence Livermore National Laboratory, Livermore, California 94550, USA32Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA33LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France34Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden35Institut für Kernphysik, University of Muenster, D-48149 Muenster, Germany36Myongji University, Yongin, Kyonggido 449-728, Korea37Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan38University of New Mexico, Albuquerque, New Mexico 87131, USA39New Mexico State University, Las Cruces, New Mexico 88003, USA40Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA41IPN-Orsay, Université Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France42Peking University, Beijing, People’s Republic of China43PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, RU-188300, Russia44RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan45RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA46Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan47Saint Petersburg State Polytechnic University, St. Petersburg, Russia48Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil49System Electronics Laboratory, Seoul National University, Seoul, Korea50Chemistry Department, Stony Brook University, Stony Brook, SUNY, New York 11794-3400, USA51Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794, USA52SUBATECH (Ecole des Mines de Nantes, CNRS-IN2P3, Université de Nantes) BP 20722-44307, Nantes, France53University of Tennessee, Knoxville, TN 37996, USA54Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan55Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan56Vanderbilt University, Nashville, Tennessee 37235, USA57Waseda University, Advanced Research Institute for Science and Engineering, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan58Weizmann Institute, Rehovot 76100, Israel59Yonsei University, IPAP, Seoul 120-749, Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号