首页> 外文期刊>Physica status solidi >Temperature-Dependent Electrical Transport Properties of Single-Walled Carbon Nanotube Thin Films Prepared by Electrohydrodynamic Atomization Technique
【24h】

Temperature-Dependent Electrical Transport Properties of Single-Walled Carbon Nanotube Thin Films Prepared by Electrohydrodynamic Atomization Technique

机译:通过电液动力雾化技术制备的单壁碳纳米管薄膜的温度依赖性电气传输性能

获取原文
获取原文并翻译 | 示例
           

摘要

Herein, the temperature-dependent electrical transport properties of single-walled carbon nanotube (SWCNT) thin films prepared by the electrohydrodynamic atomization technique, are reported. The physico-chemical properties of SWCNT thin films are characterized using X-ray diffraction, Raman, transmission electron, and field-emission scanning electron microscopy techniques. The electrical transport measurements are carried out from 285 to 20 K. A semiconducting behavior is observed when the temperature goes down to 20 K. The prevalent transport mechanism is analyzed with a variable-range hopping model, which is well aided by Raman analysis. Furthermore, the thermal dependence of the electrical conductivity of the SWCNT thin film is investigated using the Arrhenius model, which reveals the conductivity of the SWCNT thin film at low-temperature shows in the order of mega-Ohm resistance with a small activation energy of 1.81 J mol_1 and an exponential decrement in conductivity is observed while decreasing the temperature to 20 K, which further confirms the semiconducting behavior of the SWCNT thin film. The Poole-Frenkel conduction mechanism shows best fit for the temperatures 50, 75, and 100 K, and the results provide potential insights into the science and development of SWCNT research.
机译:这里,报道了通过电学剧雾化技术制备的单壁碳纳米管(SWCNT)薄膜的温度依赖性电传输性能。使用X射线衍射,拉曼,透射电子和现场发射扫描电子显微镜技术表征SWCNT薄膜的物理化学性质。电气传输测量从285到20k进行。当温度降至20k时,观察到半导体行为。通过可变范围跳跃模型分析普遍的运输机制,该模型通过拉曼分析很好地辅助。此外,使用Arrhenius模型研究了SWCNT薄膜的电导率的热依赖性,该曲线模型揭示了低温下的SWCNT薄膜的电导率,其巨型抗体的尺寸为1.81的小激活能量。在将温度降低到20k的同时观察到J MOL_1和导电中的指数衰减,这进一步证实了SWCNT薄膜的半导体行为。 Poole-Frenkel传导机制显示最适合温度50,75和100 k,结果为SWCNT研究的科学和发展提供了潜在的见解。

著录项

  • 来源
    《Physica status solidi》 |2020年第15期|2000029.1-2000029.7|共7页
  • 作者单位

    Department of Applied and Environmental Chemistry University of Szeged Rerrich Bela ter 1 H-6720 Szeged Hungary Advanced Nanomaterials and System Lab (ANL) Department of Materials Science Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India;

    Laboratory for Sensors Energy and Electronic Devices (Lab SEED) Department of Physics & Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 India;

    Department of Physics Vivekananda Educational Institutions Namakkal 637 205 Tamil Nadu India;

    Future Industries Institute Division of Information Technology Engineering and the Environment University of South Australia Building X - X2-02-D01 Mawson Lakes Campus Adelaide SA 5001 South Australia;

    Department of Mechanical Engineering Jeju National University Jeju 690-756 Korea;

    Department of Applied and Environmental Chemistry University of Szeged Rerrich Bela ter 1 H-6720 Szeged Hungary;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Arrhenius model; low-temperature electrical transport; Poole-Frenkel conduction; single-walled carbon nanotube thin films; variable-range hopping;

    机译:arrhenius模型;低温电气运输;Poole-Frenkel传导;单壁碳纳米管薄膜;可变范围跳跃;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号