首页> 外文期刊>Photovoltaics, IEEE Journal of >A Predictive Optical Simulation Model for the Rear-Surface Roughness of Passivated Silicon Solar Cells
【24h】

A Predictive Optical Simulation Model for the Rear-Surface Roughness of Passivated Silicon Solar Cells

机译:钝化硅太阳能电池后表面粗糙度的预测光学仿真模型

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we introduce a predictive, physics-based model, i.e., the so-called tilted-mirror model (tm-model), for optical modeling of rough rear surfaces on silicon solar cells. An enhanced method of using transfer matrices at the rear-side interface of solar cells is developed and combined with Monte Carlo ray tracing. As a result, a physically consistent and precise simulation of the spectral reflectance is achieved, thus leading to a predictive quality of the simulations that could previously not be reached for solar cells with a remaining irregular rear-surface roughness. This advance in optical simulation enables the researcher to directly analyze the effects of varying rear-side passivation materials and thicknesses, as well as the impact of different surface morphologies on the gained charge-carrier generation rate of a solar cell. A comparison with the Phong model shows that the tm-model is able to simulate the generated photocurrent $J_{rm ph}$ more accurately, as it is shown that the Phong model tends to overestimate this value due to imprecise calculation of charge-carrier generation. In an application of the tm-model to passivated emitter and rear cells, it is shown that a strong planarization of the rear surface leads to an improvement in photogenerated current up to 0.13 mA/cm $^{2}$ compared with a weak planarization.
机译:在本文中,我们介绍了一种基于物理学的预测模型,即所谓的倾斜镜模型(tm模型),用于对硅太阳能电池上的粗糙背面进行光学建模。开发了一种在太阳能电池的后侧界面使用转移矩阵的增强方法,并将其与蒙特卡洛射线追踪技术相结合。结果,实现了光谱反射率的物理上一致且精确的模拟,因此导致了模拟的预测质量,该模拟质量以前对于具有剩余的不规则的后表面粗糙度的太阳能电池是无法达到的。光学仿真技术的这一进步使研究人员能够直接分析变化的背面钝化材料和厚度的影响,以及不同表面形态对太阳能电池获得的载流子生成速率的影响。与Phong模型的比较表明,tm模型能够更准确地模拟生成的光电流$ J_ {rm ph} $,因为表明Phong模型由于电荷载流子的不精确计算而倾向于高估该值代。在将tm模型应用于钝化的发射极和后单元时,表明较弱的平面化,背面的强平面化可导致光生电流提高至0.13 mA / cm $ ^ {2} $ 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号