首页> 外文期刊>Photonic network communications >Capacity Planning of Survivable Mesh-based Transport Networks under Demand Uncertainty
【24h】

Capacity Planning of Survivable Mesh-based Transport Networks under Demand Uncertainty

机译:需求不确定性下可生存的基于网格的传输网络的容量规划

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Almost all existing work on the design of survivable networks is based on a specific demand forecast to which one optimizes routing and transport capacity assignment for a single target planning view. In practice these single-forecast models may be used repetitively by a planner to consider a range of different scenarios individually, hoping to develop intuition about how to proceed. But this is not the same as having a planning method that can inherently and quantitatively consider a range of possible futures all at once. Our approach considers both the cost of initial design construction and the expected cost of possible augmentations or "recourse" actions required in the future, adapting the network to accommodate different actual future demands. In practice, these recourse actions might include lighting up a new DWDM channel on an existing fiber or pulling-in additional cables, or leasing additional capacity from third party network operators, and so on. A stochastic linear programming approach is used to achieve designs for which the total cost of current outlays plus the expected future recourse costs is minimized. Realistic aspects of optical networking such as network survivability based on shared spare capacity and the modularity and economy-of-scale effects are considered. These are not only important practical details to reflect in planning, but they give the "future-proof design problem for such networks some unique aspects. For instance, what is the working capacity under one future scenario that may not waste capacity if that demand scenario does not materialize, because the same channels may be used as shared spare capacity under other future scenarios. Similarly economy-of-scale effects bear uniquely on the future-proof planning problem, as the least-cost strategy on a life-cycle basis may actually be to place more capacity today than current requirements would suggest. This is of obvious relevance to planners given the recent hard times in the telecommunications industry, causing a tendency to minimize costs now regardless of the consequences.
机译:几乎所有有关可生存网络设计的现有工作都是基于一种特定的需求预测,针对该需求预测可以针对单个目标规划视图优化路由和传输容量分配。在实践中,计划者可能会反复使用这些单预测模型来分别考虑一系列不同的情况,以期就如何进行开发产生直觉。但是,这与拥有一种可以同时固有地和定量地考虑一系列可能的期货的计划方法不同。我们的方法既考虑了初始设计构建的成本,又考虑了未来可能需要的扩充或“追索”行动的预期成本,从而使网络适应各种不同的未来实际需求。实际上,这些追索行动可能包括点亮现有光纤上的新DWDM信道或引入额外的电缆,或向第三方网络运营商租赁额外的容量,等等。随机线性规划方法用于实现将当前支出的总成本加上预期的未来资源成本最小化的设计。考虑了光网络的现实方面,例如基于共享备用容量的网络生存能力以及模块化和规模经济效应。这些不仅是要在规划中反映的重要实用细节,而且还为此类网络的“面向未来的设计问题”提供了一些独特的方面。例如,在一种未来情况下的工作能力是什么,如果这种需求情况可能不会浪费能力不会实现,因为相同的渠道可能在其他将来的情况下用作共享备用容量,类似的规模经济效应在面向未来的计划问题上也具有独特性,因为基于生命周期的最低成本策略可能考虑到电信行业最近的艰难时期,这实际上对当今的规划者来说具有比当前需求所建议的更多的容量,这与规划者有着明显的联系,这导致了现在将成本降到最低而不论后果如何的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号