首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Distributed Shortcut Networks: Low-Latency Low-Degree Non-Random Topologies Targeting the Diameter and Cable Length Trade-Off
【24h】

Distributed Shortcut Networks: Low-Latency Low-Degree Non-Random Topologies Targeting the Diameter and Cable Length Trade-Off

机译:分布式快捷网络:针对直径和电缆长度折衷的低延迟低度非随机拓扑

获取原文
获取原文并翻译 | 示例
           

摘要

Low communication latency becomes a main concern in highly parallel computers and supercomputers that reach millions of processing cores. Random network topologies are better suited to achieve low average shortest path length and low diameter in terms of the hop counts between nodes. However, random topologies lead to two problems: (1) increased aggregate cable length on a machine room floor that would become dominant for communication latency in next-generation custom supercomputers, and (2) high routing complexity that typically requires a routing table at each node (e.g., topology-agnostic deadlock-free routing). In this context, we first propose low-degree non-random topologies that exploit the small-world effect, which has been well modeled by some random network models. Our main idea is to carefully design a set of various-length shortcuts that keep the diameter small while maintaining a short cable length for economical passive electric cables. We also propose custom routing that uses the regularity of the various-length shortcuts. Our experimental graph analyses show that our proposed topology has low diameter and low average shortest path length, which are considerably better than those of the counterpart 3-D torus and are near to those of a random topology with the same average degree. The proposed topology has average cable length drastically shorter than that of the counterpart random topology, which leads to low cost of interconnection networks. Our custom routing takes non-minimal paths to provide lower zero-load latency than the minimal custom routings on different counterpart topologies. Our discrete-event simulation results using SimGrid show that our proposed topology is suitable for applications that have irregular communication patterns or non-nearest neighbor collective communication patterns.
机译:在达到数百万个处理核心的高度并行计算机和超级计算机中,低通信延迟成为主要问题。就节点之间的跳数而言,随机网络拓扑更适合于实现较低的平均最短路径长度和较小的直径。但是,随机拓扑结构会导致两个问题:(1)机房地板上的总电缆长度增加,这将成为下一代定制超级计算机中通信延迟的主要因素;(2)路由复杂度高,通常每个服务器都需要一个路由表节点(例如,与拓扑无关的无死锁路由)。在这种情况下,我们首先提出利用小世界效应的低度非随机拓扑,该拓扑已被一些随机网络模型很好地建模。我们的主要思想是精心设计一组各种长度的快捷方式,以保持直径较小,同时保持较短的电缆长度,从而实现经济的无源电缆。我们还建议使用各种长度的快捷方式的规则性的自定义路由。我们的实验图分析表明,我们提出的拓扑具有较低的直径和较低的平均最短路径长度,这明显优于对应的3-D环面,并且接近具有相同平均度的随机拓扑。所提出的拓扑具有比对应的随机拓扑的平均电缆长度短得多的平均电缆长度,这导致了互连网络的低成本。我们的自定义路由采用非最小路径,以提供比不同对等拓扑上的最小自定义路由更低的零负载延迟。我们使用SimGrid进行的离散事件仿真结果表明,我们提出的拓扑结构适合于具有不规则通信模式或非最近邻居集体通信模式的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号